View source: R/Proxytools_tools.R
paleodata_signal_extraction | R Documentation |
Extract low-dimensional signals from multivariate datasets (e.g. pollen assemblages)
paleodata_signal_extraction(xin, signal_type, signal_components = 1)
xin |
Proxytibble with multivariate proxy data in 'zoo::zoo' format, or a multivariate irregular time series object ('zoo::zoo') |
signal_type |
Method to extract signals; Implemented methods: 'pca' Principal component analysis 'dca' Detrended correspondance analysis 'ca' Correspondance analysis 'prc' Principal curves |
signal_components |
Components that should be returned (e.g. c(2,3) for 'pca' returns the second and third principal components) |
Proxytibble with extracted signals in proxy data, or irregular time series object ('zoo::zoo') containing the extracted signals
prcomp (from 'stats') for principal component analysis
decorana (from 'vegan') for detrended correspondance analysis
cca (from 'vegan') for correspondance analysis
principal_curve (from 'princurve') for principal curves
# Load ice core example data
library(PTBoxProxydata)
mng <- ProxyDataManager()
icecoredata <- load_set(mng,'icecore_testset',zoo_format = 'zoo')
# Compute PCA from multivariate zoo's
icecoredata_pca <- paleodata_signal_extraction(icecoredata, 'pca')
plot(icecoredata_pca$proxy_data[[1]])
plot(icecoredata_pca$proxy_data[[2]])
# Compute principal curve from multivariate zoo's
icecoredata_prc <- paleodata_signal_extraction(icecoredata, 'prc')
plot(icecoredata_prc$proxy_data[[1]])
plot(icecoredata_prc$proxy_data[[2]])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.