#'
#' @title Identify missing values
#' @description ...
#' @details ...
#'
#' @return the variables names with missing values.
#'
#'
#' @author Paula Silva, Rui Camacho
#' @export
#
identifyNas <- function(execution) {
if(execution == 1) {
dataset <<- eval(parse(text="D")) ##Define dataset of globalenv.
} else if (execution > 1) {
dataset <- dataset
}
# Filter only numeric data
numericDataset <- Filter(is.numeric, dataset)
col.sums <- colSums(is.na(numericDataset))
naCols <- names(which(col.sums!=0))
completeCols <- names(which(col.sums==0))
nas <- is.na(numericDataset)
data.nas <- as.data.frame(numericDataset[,naCols])
data.complete <- as.data.frame(numericDataset[,completeCols])
colnames(data.complete) <- completeCols
rownames(data.complete) <- rownames(numericDataset)
return(list(naCols=naCols, completeCols=completeCols, data.nas=colSums(is.na(data.nas))))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.