# ============================= ismev::rlarg.fit ============================ #
# Methods for class ismev_rlarg
#' @export
logLikVec.ismev_rlarg <- function(object, pars = NULL, ...) {
if (!missing(...)) {
warning("extra arguments discarded")
}
# If the parameter estimates have not been provided in pars then extract
# them from the fitted object
if (is.null(pars)) {
pars <- coef(object)
}
n_pars <- length(pars)
#
if (object$trans & is.null(object$xdat)) {
stop("Covariate data needed. Refit the model using lax::rlarg_refit")
}
if (!object$trans) {
response_data <- object$data
# If trans = FALSE then there are no covariates and object$data contains
# the response data
mu <- pars[1]
sigma <- pars[2]
xi <- pars[3]
} else {
# If trans = TRUE then there are covariates
response_data <- object$xdat
# The numbers of parameters for mu, sigma, xi
reg_pars <- sapply(object$model, length)
npmu <- reg_pars[1] + 1
npsc <- reg_pars[2] + 1
npsh <- reg_pars[3] + 1
# object$mumat, object$sigmat, object$shmat contain design matrices
# Values of mu, sigma, xi for each observation
mu <- object$mulink(object$mumat %*% (pars[1:npmu]))
sigma <- object$siglink(object$sigmat %*%
(pars[seq(npmu + 1, length = npsc)]))
xi <- object$shlink(object$shmat %*%
(pars[seq(npmu + npsc + 1, length = npsh)]))
}
# Calculate the loglikelihood contributions
if (any(sigma <= 0)) {
val <- -Inf
} else {
rlarg_loglik_vec <- function(x, mu, sigma, xi) {
logg <- apply(x, 2, revdbayes::dgev, loc = mu, scale = sigma,
shape = xi, log = TRUE)
logG <- apply(x, 2, revdbayes::pgev, loc = mu, scale = sigma,
shape = xi, log.p = TRUE)
logGmin <- revdbayes::pgev(min_response, loc = mu, scale = sigma,
shape = xi, log.p = TRUE)
loglik <- logGmin + rowSums(logg - logG, na.rm = TRUE)
return(loglik)
}
min_response <- apply(response_data, 1, min, na.rm = TRUE)
val <- rlarg_loglik_vec(x = response_data, mu = mu, sigma = sigma, xi = xi)
}
# Return the usual attributes for a "logLik" object
attr(val, "names") <- NULL
attr(val, "nobs") <- nobs(object)
attr(val, "df") <- n_pars
class(val) <- "logLikVec"
return(val)
}
#' @export
nobs.ismev_rlarg <- function(object, ...) {
return(nrow(object$vals))
}
#' @export
coef.ismev_rlarg <- function(object, ...) {
val <- object$mle
names(val) <- ismev_gev_names(object)
return(val)
}
#' @export
vcov.ismev_rlarg <- function(object, ...) {
vc <- object$cov
dimnames(vc) <- list(ismev_gev_names(object), ismev_gev_names(object))
return(vc)
}
#' @export
logLik.ismev_rlarg <- function(object, ...) {
return(logLik(logLikVec(object)))
}
# See ismev_methods.R for nobs, coef, vcov, logLik methods for class "rlarg.fit"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.