#' Retrieve US map data
#'
#' @param regions The region breakdown for the map, can be one of
#' (\code{"states"}, \code{"state"}, \code{"counties"}, \code{"county"}).
#' The default is \code{"states"}.
#' @param include The regions to include in the resulting map. If \code{regions} is
#' \code{"states"}/\code{"state"}, the value can be either a state name, abbreviation or FIPS code.
#' For counties, the FIPS must be provided as there can be multiple counties with the
#' same name. If states are provided in the county map, only counties in the included states
#' will be returned.
#' @param exclude The regions to exclude in the resulting map. If \code{regions} is
#' \code{"states"}/\code{"state"}, the value can be either a state name, abbreviation or FIPS code.
#' For counties, the FIPS must be provided as there can be multiple counties with the
#' same name. The regions listed in the \code{include} parameter are applied first and the
#' \code{exclude} regions are then removed from the resulting map. Any excluded regions
#' not present in the included regions will be ignored.
#' @param as_sf Defunct, this parameter no longer has any effect and will be removed in
#' the future.
#' @param data_year The year for which to obtain map data.
#' If the value is \code{NULL}, the most recent year's data is used. If the
#' provided year is not found from the available map data sets, the next most
#' recent year's data is used. This can be used if an older data set is being
#' plotted on the US map so that the data matches the map more accurately.
#' Therefore, the provided value should match the year of the plotted data set.
#' The default is \code{NULL}, i.e. the most recent available year is used.
#'
#' @return An `sf` data frame of US map coordinates divided by the desired \code{regions}.
#'
#' @examples
#' str(us_map())
#'
#' df <- us_map(regions = "counties")
#' west_coast <- us_map(include = c("CA", "OR", "WA"))
#'
#' excl_west_coast <- us_map(exclude = c("CA", "OR", "WA"))
#'
#' ct_counties_as_of_2022 <- us_map(regions = "counties", include = "CT", data_year = 2022)
#'
#' @export
us_map <- function(
regions = c("states", "state", "counties", "county"),
include = c(),
exclude = c(),
as_sf = TRUE,
data_year = NULL
) {
regions <- match.arg(regions)
if (regions == "state") regions <- "states"
else if (regions == "county") regions <- "counties"
map_year <- select_map_year(data_year)
file_name <- paste0("us_", regions, ".gpkg")
file_path <- system.file("extdata", map_year, file_name, package = "usmapdata")
df <- sf::read_sf(file_path)
if (length(include) > 0) {
df <- df[df$full %in% include |
df$abbr %in% include |
df$fips %in% include |
substr(df$fips, 1, 2) %in% include, ]
}
if (length(exclude) > 0) {
df <- df[!(df$full %in% exclude |
df$abbr %in% exclude |
df$fips %in% exclude |
substr(df$fips, 1, 2) %in% exclude), ]
}
df[order(df$abbr), ]
}
#' Retrieve centroid labels
#'
#' @inheritParams us_map
#'
#' @return An `sf` data frame of state or county centroid labels and positions
#' relative to the coordinates returned by the \code{us_map} function.
#'
#' @export
centroid_labels <- function(
regions = c("states", "state", "counties", "county"),
as_sf = TRUE,
data_year = NULL
) {
regions <- match.arg(regions)
if (regions == "state") regions <- "states"
else if (regions == "county") regions <- "counties"
map_year <- select_map_year(data_year)
file_name <- paste0("us_", regions, "_centroids.gpkg")
file_path <- system.file("extdata", map_year, file_name, package = "usmapdata")
sf::read_sf(file_path)
}
#' Years for which US map data is available
#'
#' @return A numeric vector of available map data years,
#' sorted in descending order.
#'
#' @examples
#' available_map_years()
#'
#' @export
available_map_years <- function() {
sort(as.numeric(list.files(system.file("extdata", package = "usmapdata"))))
}
#' Select appropriate map data year from available years
#'
#' @param data_year The year for which to obtain \code{usmap} data.
#' If the value is \code{NULL}, the most recent year is returned. If the
#' provided year is not found from the available map data sets, the next most
#' recent available year is returned.
#'
#' @keywords internal
select_map_year <- function(data_year) {
years <- available_map_years()
if (is.null(data_year)) {
max(years)
} else if (!(data_year %in% years)) {
warn <- function(provided, used) {
warning(
paste0(provided, " map data not available, using ", used, " instead.\n\n",
"See available years with `usmapdata::available_map_years()`."),
call. = FALSE
)
}
years_greater <- years[years >= data_year]
if (length(years_greater) == 0) {
last_available <- max(years[years < data_year])
warn(data_year, last_available)
last_available
} else {
next_available <- min(years_greater)
warn(data_year, next_available)
next_available
}
} else {
data_year
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.