Description Usage Arguments Value Author(s) References See Also Examples
One of the main functions in the hierNet package. Fits a logistic path of hierNet models over different values of the regularization parameter. Calls hierNet.logistic, which builds a regression model with hierarchically constrained pairwise interactions. Required inputs are an x matrix of features (the columns are the features) and a y vector of values. Reasonably fast for moderate sized problems (100-200 variables). We are currently working on a alternate algorithm for large scale problems.
1 2 3 4 5 6 | hierNet.logistic.path(x, y,
lamlist = NULL, delta=1e-8, minlam = NULL, maxlam = NULL, flmin=.01, nlam = 20,
diagonal = TRUE, strong = FALSE, aa = NULL, zz = NULL,
stand.main = TRUE, stand.int = FALSE,
rho = nrow(x), niter = 100, sym.eps = 0.001,
step = 1, maxiter = 2000, backtrack = 0.2, tol = 1e-05, trace = 0)
|
x |
A matrix of predictors, where the rows are the samples and the columns are the predictors |
y |
A vector of observations equal to 0 or 1, where length(y) equals nrow(x) |
lamlist |
Optional vector of values of lambda (the regularization parameter). L1 penalty param is |
delta |
Elastic Net parameter. Squared L2 penalty param is |
minlam |
Optional minimum value for lambda |
maxlam |
Optional maximum value for lambda |
flmin |
Fraction of maxlam; minlam= flmin*maxlam. If computation is slow, try increasing flmin to focus on the sparser part of the path |
nlam |
Number of values of lambda to be tried |
diagonal |
Flag specifying whether to include "pure" quadratic terms, th_jjX_j^2, in the model. Default TRUE. |
stand.main |
Should main effects be standardized? Default TRUE |
stand.int |
Should interactions be standardized? Default FALSE |
strong |
Flag specifying strong hierarchy (TRUE) or weak hierarchy (FALSE). Default FALSE |
aa |
An *optional* argument, a list with results from a previous call |
zz |
An *optional* argument, a matrix whose columns are products of features, computed by the function compute.interactions.c |
rho |
ADMM parameter: tuning parameter (>0) for ADMM. If there are convergence
problems, try decreasing |
niter |
ADMM parameter: number of iterations |
sym.eps |
ADMM parameter Thresholding for symmetrizing with strong=TRUE |
step |
Stepsize for generalized gradient descent |
maxiter |
Maximum number of iterations for generalized gradient descent |
backtrack |
Backtrack parameter for generalized gradient descent |
tol |
Error tolerance parameter for generalized gradient descent |
trace |
Output option; trace=1 gives verbose output |
bp |
p by nlam matrix of estimated "positive part" main effects (p=#features) |
bn |
p by nlam matrix of estimated "negative part" main effects |
th |
p by p by nlam array of estimated interaction coefficients |
obj |
nlam values of objective function, one per lambda value |
lamlist |
Vector of values of lambda used |
mx |
p-vector of column means of x |
sx |
p-vector of column standard deviations of x |
my |
mean of y |
mzz |
column means of feature product matrix |
szz |
column standard deviations of feature product matrix |
Jacob Bien and Robert Tibshirani
Bien, J., Taylor, J., Tibshirani, R., (2013) "A Lasso for Hierarchical Interactions." Annals of Statistics. 41(3). 1111-1141.
hierNet,predict.hierNet, hierNet.cv
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.