Description Usage Arguments Details Value Examples
Significance controlled variable selection selects variables in either mu, sigma, and xi with backward direction based on AIC.
1 2 3 4 5 6 7 | backward_AIC(fit, do_mu = TRUE, do_sigma = FALSE, do_xi = FALSE)
backward_AIC_mu(fit)
backward_AIC_sigma(fit)
backward_AIC_xi(fit)
|
fit |
An object of class |
do_mu |
do backward selection on mu if |
do_sigma |
do backward selection on sigma if |
do_xi |
do backward selection on xi if |
Add details.
An object (a list) of class c("gev", "evreg")
summarising
the new model fit (which may be the same as fit
) and containing the
following additional components
Input_fit |
The input object of the class |
Note |
A message that tells if covariates have been dropped or not. |
Output_fit |
A list that contains formulae for the parameter,
and the output object of the class |
dropped_covariate |
A character vector shows dropped covariates |
AIC |
AIC values for both input model and output model if two models are different. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ### Oxford and Worthing annual maximum temperatures
ow$year <- (ow$year - 1901) / (1980 - 1901)
ow1 <- gevreg(y = temp, data = ow[-3], mu = ~loc + year, sigma = ~loc,
xi = ~loc, sigmalink = identity)
backward_AIC_mu(ow1)
### Annual Maximum and Minimum Temperature
P6 <- gevreg(TMX1, data = PORTw[,-1], mu = ~MTMAX + AOindex + STDTMAX + STDMIN + MDTR)
P7 <- gevreg(TMX1, data = PORTw[,-1], sigma = ~MTMAX + STDTMAX + STDMIN + MDTR)
P8 <- gevreg(TMX1, data = PORTw[,-1], xi = ~MTMAX + STDTMAX + STDMIN + MDTR)
backward_AIC_mu(P6)
backward_AIC_sigma(P7)
backward_AIC_xi(P8)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.