backward_gevreg: Backward Selection on GEV Parameter

Description Usage Arguments Details Value See Also Examples

View source: R/backward_gevreg.R

Description

Significance controlled variable selection selects variables in either mu, sigma, and xi with backward direction based on likelihood-ratio-test, AIC, or p value from Wald test.

Usage

1
2
backward_gevreg(fit, criterion = "pvalue", alpha = 0.05,
  do_mu = TRUE, do_sigma = FALSE, do_xi = FALSE)

Arguments

fit

An object of class c("gev", "evreg") returned from gevreg summarising the current model fit.

criterion

Either based LRT(Likelihood ratio test), AIC, or pvalue(by Wald test). Default criterion is pvalue.

alpha

Significance level if criterion equals pvalue or LRT. Default value is 0.05.

do_mu

do backward selection on mu if do_mu equals TRUE. Default is TRUE.

do_sigma

do backward selection on sigma if do_sigma equals TRUE. Default is FALSE.

do_xi

do backward selection on xi if do_xi equals TRUE. Default is FALSE.

Details

The function performs backward elimination for an object of class c("gev", "evreg"). When do_mu, do_sigma, and do_xi all equal TRUE, the function performs backward selection on xi first, then on sigma, and finally on mu.

Non-zero components of inital value of xi may mean that the likelihood is zero at the starting values. This is because for xi not equal to zero, there is a constraint on the parameter space. To avoid this set all components of initial value of xi to 0, i.e. the Gumbel case.

Value

An object (a list) of class c("gev", "evreg") summarising the new model fit (which may be the same as fit) and containing the following additional components

Input_fit

The input object of the class c("gev", "evreg").

Note

A message that tells if a covariate has been dropped or not.

Output_fit

A list that contains formulae for the parameter, and the output object of the class c("gev", "evreg") if the output fit is different from the input fit.

dropped_covariate

A character vector shows dropped covariate

criterion_value

criterion value for if both input model and output model are different.

See Also

gevreg

Examples

1
2
3
4
### Annual Maximum and Minimum Temperature

P6 <- gevreg(y = TMX1, data = PORTw[, -1], mu = ~MTMAX + AOindex + STDTMAX + STDMIN + MDTR)
backward_gevreg(P6)

pengyuwei94/evreg documentation built on Aug. 29, 2019, 1:06 p.m.