Description Usage Arguments Details Value Examples
Significance controlled variable selection selects variables in either mu, sigma, and xi with backward direction based on Likelihood-ratio-test.
1 2 3 4 5 6 7 8 | backward_LRT(fit, alpha = 0.05, do_mu = TRUE, do_sigma = FALSE,
do_xi = FALSE)
backward_LRT_mu(fit, alpha = 0.05)
backward_LRT_sigma(fit, alpha = 0.05)
backward_LRT_xi(fit, alpha = 0.05)
|
fit |
An object of class |
alpha |
Significance level. Default value is 0.05. |
do_mu |
do backward selection on mu if |
do_sigma |
do backward selection on sigma if |
do_xi |
do backward selection on xi if |
Add details.
An object (a list) of class c("gev", "evreg")
summarising
the new model fit (which may be the same as fit
) and containing the
following additional components
Input_fit |
The input object of the class |
Note |
A message that tells if covariates have been dropped or not. |
Output_fit |
A list that contains formulae for the parameter,
and the output object of the class |
dropped_covariate |
A character vector shows dropped covariates |
pvalue |
A data frame that contains p values with five decimal places of the Likelihood-ratio-test. |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ### Oxford and Worthing annual maximum temperatures
ow$year <- (pjn$year - 1901) / (1980 - 1901)
ow1 <- gevreg(y = temp, data = ow[-3], mu = ~loc + year, sigma = ~loc,
xi = ~loc, sigmalink = identity)
backward_LRT_xi(ow1)
#' ### Annual Maximum and Minimum Temperature
P3 <- gevreg(y = TMX1, data = PORTw[, -1], mu = ~MTMAX + STDTMAX + STDMIN)
P5 <- gevreg(y = TMX1, data = PORTw[, -1], xi = ~MTMAX + AOindex)
backward_LRT_mu(P3)
backward_LRT_xi(P5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.