library(bmgarch )
options(mc.cores=2)
## Fit at least two models to compute model weights
x1 <- x2 <- 0
for( i in 2:100 ) {
x1[i] <- x1[i-1] + rnorm(1, 0, 1 )
x2[i] <- x2[i-1] + rnorm(1, 0, 1 )
}
devtools::load_all()
.get_target_stan_path( )
out <- standat(data = stocks[1:100, c("toyota", "nissan" )],
P = 1, Q = 1, meanstructure = 0, xC = NULL,
standardize_data = 1, distribution = 0)
stan_data <- out[ c("T", "xC", "rts", "nt", "distribution", "P", "Q", "meanstructure")]
stan_data$rts[100]
stan_data$T
fit <- bmgarch(data = stocks[1:100, c("toyota", "nissan", "honda")],
Q = 1,
standardize_data = TRUE,
parameterization = "CCC",
iterations = 500, sampling_algorithm = 'VB',
backend = "cmdstanr",
threads = 1,
seed = 123,
refresh = 0,
init = 0,
save_latent_dynamics = FALSE,
output_dir = NULL)
## Stuck at this error:
## Error in as.vector(x, "character") :
## cannot coerce type 'environment' to vector of type 'character'
summary(fit )
plot(fit )
forecast(fit, ahead = 10 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.