inst/tutorial_resampling.R

# remove all objects from R environment
rm(list = ls())
# load package
library(PET)
# fix the random seed
set.seed(19)

N <- 1000
logweights <- rnorm(N)

normalize_weight_results <- normalize_weight(logweights)
normalized_weights <- normalize_weight_results$nw

# Now resampling schemes, coded in R
N <- 6
logweights <- rnorm(N)
normalize_weight_results <- normalize_weight(logweights)
normalized_weights <- normalize_weight_results$nw

Nprime <- 10000
ancestors <- multinomial_resampling_R(Nprime, normalized_weights)
summary(abs((tabulate(ancestors) / Nprime - normalized_weights)/normalized_weights))

ancestors <- multinomial_resampling(Nprime, normalized_weights)
summary(abs((tabulate(ancestors) / Nprime - normalized_weights)/normalized_weights))

ancestors <- systematic_resampling(Nprime, normalized_weights)
summary(abs((tabulate(ancestors) / Nprime - normalized_weights)/normalized_weights))

ancestors <- ssp_resampling(Nprime, normalized_weights)
summary(abs((tabulate(ancestors) / Nprime - normalized_weights)/normalized_weights))
pierrejacob/PET documentation built on May 25, 2019, 11:35 p.m.