#' Read emission factors from a PBL IMAGE baseline (no mitigation) scenario
#' for a specific sector and gas species (CH4 or N2O)
#'
#' @md
#' @param subtype gas and subsector combination string. One of:
#' c("CH4_entf", "CH4_gasp", "CH4_landf", "CH4_manu", "CH4_oilp",
#' "CH4_rice", "CH4_sewa", "N2O_adip", "N2O_fert", "N2O_manu",
#' "N2O_nitr", "N2O_sewa", "N2O tran")
#' @return A [`magpie`][magclass::magclass] object.
#'
#' @importFrom dplyr mutate select
#' @importFrom tidyr pivot_longer
#' @importFrom readxl read_excel
#'
#' @export
readPBL_EFsBaseline <- function(subtype) {
# IMAGE regions in the order they appear in the Excel file
# For some reason, the mapping in regionmapping_IMAGE_PBL_Stegmann2022.csv has
# "Ukraine region" instead of "Ukraine", so we use the same here
IMAGE_regions <- c(
"Canada",
"USA",
"Mexico",
"Central America",
"Brazil",
"Rest of South-America",
"North Africa",
"West Africa",
"East Africa",
"South Africa",
"West Europe",
"Central Europe",
"Turkey",
"Ukraine region",
"Kazachstan",
"Russia",
"Middle East",
"India",
"Korea",
"China+",
"South East Asia",
"Indonesia",
"Japan",
"Oceania",
"Rest of South Asia",
"Rest of South Africa"
)
intable <- read_excel("NonCO2_Emission_Factors_&_SSP2-dependent_Pessimistic_MAC_IMAGE.xlsx", sheet = paste0("EF_",subtype), skip = 2)
colnames(intable) <- c("year", IMAGE_regions)
x <- as.magpie(tidyr::pivot_longer(intable, cols = -1, names_to = "region", values_to = "value"), spatial = "region")
# Add the subtype in the third, singleton dimension
names(dimnames(x))[3] <- "SRC"
getItems(x, dim = 3) <- subtype
return(x)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.