# Using the defaults, only profile time points with an average release of >= 1%
# and only one time point with an average release of > 85% are taken into
# account.
res1 <- mimcr(data = dip3, tcol = 4:6, grouping = "batch")
res1$Similarity
res1$Parameters
# Expected results in res1$Similarity
# Tsong Hoffelder
# "Similar" "Similar"
# Expected results in res1$Parameters
# DM df1 df2 alpha
# 2.384023e-01 3.000000e+00 2.000000e+01 5.000000e-02
# K k T2 F
# 1.818182e+00 6.000000e+00 3.410141e-01 1.033376e-01
# ncp.Hoffelder F.crit F.crit.Hoffelder p.F
# 3.032296e+01 3.098391e+00 4.899274e+00 9.571526e-01
# p.F.Hoffelder MTAD Sim.Limit Obs.L
# 2.890827e-08 1.000000e+01 2.248072e+00 1.067015e+00
# Obs.U
# 1.543820e+00
# Comparison with T2-test for equivalence for dissolution data from the 'T2EQ'
# package
\dontrun{
if (requireNamespace("T2EQ")) {
library(T2EQ)
data(ex_data_JoBS)
T2EQ.dissolution.profiles.hoffelder(
X = as.matrix(dip3[dip3$type == "ref", c("x.15", "x.20", "x.25")]),
Y = as.matrix(dip3[dip3$type == "test", c("x.15", "x.20", "x.25")]))
}
# Excerpt of output:
# Hotelling's T2: 0.3410141
# Noncentrality parameter: 30.32296
# Significance level: 0.05
# Teststatistic: 0.1033376
# Quantile of noncent. F-distribution: 4.899274
# p-value of the T2-test for equivalence: p = 2.890827e-08
}
# Use of 'bounds = c(1, 85)'
res2 <- mimcr(data = dip1, tcol = 3:10, grouping = "type", bounds = c(1, 85),
nsf = c(1, 2))
res2$Similarity
res2$Profile.TP
res2[["Parameters"]][c("p.F.Hoffelder", "Sim.Limit", "Obs.U")]
# Expected results in res2$Similarity
# Tsong Hoffelder
# "Dissimilar" "Dissimilar"
# Expected results in res2$Profile.TP
# t.5 t.10 t.15 t.20 t.30 t.60 t.90
# 5 10 15 20 30 60 90
# Expected results in res2$Parameters
# res2[["Parameters"]][c("p.F.Hoffelder", "Sim.Limit", "Obs.U")]
# p.F.Hoffelder Sim.Limit Obs.U
# 0.740219 11.328041 31.679020
# Allow for a larger maximum tolerable average difference (MTAD), e.g., 15.
res3 <- mimcr(data = dip1, tcol = 3:10, grouping = "type", mtad = 15,
bounds = c(1, 85), nsf = c(1, 2))
res3$Similarity
res3[["Parameters"]][c("p.F.Hoffelder", "Sim.Limit", "Obs.U")]
# Expected results in res3$Similarity
# Tsong Hoffelder
# "Dissimilar" "Dissimilar"
# Expected results in res3$Parameters
# res3[["Parameters"]][c("p.F.Hoffelder", "Sim.Limit", "Obs.U")]
# p.F.Hoffelder Sim.Limit Obs.U
# 0.3559019 16.9920622 31.6790198
# Use default 'mtad' but set 'signif = 0.1' and use 'bounds = c(1, 95)' so that
# the complete profiles are taken into account.
res4 <- mimcr(data = dip1, tcol = 3:10, grouping = "type", mtad = 10,
signif = 0.1, bounds = c(1, 95), nsf = c(1, 2))
res4$Similarity
res4$Profile.TP
res4[["Parameters"]][c("p.F.Hoffelder", "Sim.Limit", "Obs.U")]
# Expected results in res4$Similarity
# Tsong Hoffelder
# "Dissimilar" "Dissimilar"
# Expected results in res4$Profile.TP
# t.5 t.10 t.15 t.20 t.30 t.60 t.90 t.120
# 5 10 15 20 30 60 90 120
# Expected results in res4$Parameters
# res2[["Parameters"]][c("p.F.Hoffelder", "Sim.Limit", "Obs.U")]
# p.F.Hoffelder Sim.Limit Obs.U
# 0.1449045 19.4271898 33.3180044
\dontrun{
# If 'max_trial' is too small, the Newton-Raphson search may not converge.
tryCatch(
mimcr(data = dip1, tcol = 3:10, grouping = "type", max_trial = 5),
warning = function(w) message(w),
finally = message("\nMaybe increasing the number of max_trial could help."))
# If 'tol' is too big, the points found by the Newton-Raphson search may not
# be located on the confidence region boundary.
tryCatch(
mimcr(data = dip3, tcol = 4:6, grouping = "batch", tol = 1),
warning = function(w) message(w),
finally = message("\nMaybe making tol smaller could help."))
# Passing in a data frame with a grouping variable with a number of levels
# that differs from two produces an error.
tmp <- rbind(dip1,
data.frame(type = "T2",
tablet = as.factor(1:6),
dip1[7:12, 3:10]))
tryCatch(
mimcr(data = tmp, tcol = 3:10, grouping = "type", bounds = c(1, 85)),
error = function(e) message(e),
finally = message("\nMaybe you want to remove unesed levels in data."))
# Error in mimcr(data = tmp, tcol = 3:10, grouping = "type", bounds = , :
# The number of levels in column type differs from 2.
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.