Description Usage Arguments Value Author(s)
View source: R/NormInvGamPosteriorSample.R
This function can be used to generate a posterior sample of effects under the Normal-Inverse-Gamma conjugate model, for a particular combination of covariates (i.e. conditional on a fixed model). For use with JAM specify xTx and z instead of data and outcome.var. Note to self: adapted from Michael Jordan's lecture notes "Bayes Factors, g-priors, and Model Selection for Regression". Conugate expression is given under the 1/sigma prior. For the InverseGamma(a, b) prior as below, simply add a and b to the respective hyperparameters in equation (6) of Michael Jordan's notes.
1 2 3 4 5 6 7 8 9 10 11 12 |
data |
Matrix or dataframe containing the data to analyse. Rows are indiviuals, and columns contain the variables and outcome. If modelling summary statistics specify X.ref, marginal.betas, and n instead (see below). |
outcome.var |
Name of outcome variable in data. For survival data see times.var below. If modelling summary statistics with JAM this can be left null but you must specify X.ref, marginal.beats and n instead (see below). |
confounders |
Optional vector of confounders to fix in the model at all times, i.e. exclude from model selection. |
model |
Vector of covariate names to include in the model. Do not include confounders here - they should be specified with the confounders argument. |
tau |
Value to use for the g-prior sparsity parameter (tau*sigma^2 parameterisation). |
n.samples |
Number of posterior samples to draw. |
sigma2_invGamma_a |
Inverse-Gamma parameter a for the residual variance. Not specifying means the value in default.arguments is used (type "data(DefaultArguments)"). |
sigma2_invGamma_b |
Inverse-Gamma parameter b for the residual variance. Not specifying means the value in default.arguments is used (type "data(DefaultArguments)"). |
The posterior sample as a matrix. Rows are different posterior samples, and columns are parameters.
Paul Newcombe
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.