#' @title The Diet Package
#'
#' @name diet
#'
#' @description
#' The diet package builds on two primary R packages for analysing compositional diet data.
#' The first is a diet tree analysis called \code{dpart}, which takes a predator-prey
#' response and builds a classification tree (Breiman et al. 1984) using the
#' recursive partitioning algorithm available in the \code{rpart} R package (Therneau and
#' Atkinson 1997) and outlined in Kuhnert et al.(2012). The second is an isotope
#' analysis called igam, that fits a Generalized Additive Model (GAM) using the
#' \code{mgcv} package developed by Simon Wood (2006). Together, these primary functions
#' comprise the diet package which allows researchers to analyse trophic
#' ecology data, form predictions, understand the variation in the data and determine
#' what predictors, if any, can lead to changes in diet characteristics.
#'
#' @details
#' Package: diet
#' Type: Package
#' Version: 1.0
#' Date: 2018-09-19
#' License: GPL
#' LazyLoad: yes
#'
#'
#' @author Petra Kuhnert and Leanne Duffy
#'
#' @references
#' Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984) Classification
#' and Regression Trees. Wadsworth International.
#'
#' Kuhnert, P.M., Duffy, L.M., Young, J.W. and Olson, R.J. (2012) Predicting fish diet
#' composition using a bagged classification tree approach: a case study using yellowfin
#' tuna (Thunnus albacares), Marine Biology, 159, 87-100.
#'
#' Kuhnert, P.M., Duffy, L. M and Olson, R.J. (2012) The Analysis of Predator Diet
#' and Stable Isotope Data, Journal of Statistical Software, In Prep.
#'
#' Therneau, T.M. and Atkinson, E.J. (1997) Recursive Partitioning using the RPART
#' Routines, Mayo Foundation.
#'
#' Wood, S. (2006) Generalized Additive Models: An introduction with R, Chapman and
#' Hall, New York.
#'
#' @seealso \code{\link{rpart}}; \code{\link{gam}}
#'
#' @keywords package
NULL
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.