#' Run Scasat
#'
#' Add description here
#'
#' @param sc SingleCellExperiment data
#' @param peaks either TRUE (call peaks), FALSE (do not call peaks), or
#' a vector of logicals of length equal to nrow(sc) indicating the sequence of bins pertaining to peak regions
#' @param returnSc whether or not to return the utilized SingleCellExperiment data and the vector of peaks
#' @param clustering either 'all' (the default), 'none', 'hierarchical', 'louvain', or 'kmeans'
#' @param seed the seed
#' @param legend.title title of the legend
#' @param shape shape of the umap plot
#' @param shape.title title of the shape legend
#' @param title title of the plot
#
#' @return Add return here
#'
#' @details Add details here
#'
#' @author Pedro L. Baldoni, \email{pedrobaldoni@gmail.com}
#'
#' @export
#'
runScasat = function(sc,peaks = TRUE,returnSc = FALSE,clustering = 'all',seed = 2020,title = 'Scasat',
legend.title = 'Cell Type',shape = NULL,shape.title = NULL){
cond = NULL
# Calling peaks
if(!is.list(sc)){
sc <- callPeaks(sc = sc,peaks = peaks)
}
# Creating return variable
ret <- list()
ret[['true']] <- SummarizedExperiment::colData(sc$sc)$Cluster
ret[['peaks']] <- sc$peaks
# Pre processing
object <- SummarizedExperiment::assay(sc$sc,'counts')
# Starting the clock
start_time = Sys.time()
# Running tryCatch
tryCatch(
{
retCatch <- list()
# Creating Scasat object
object <- filterZeros(object)
object <- Scasat_getJaccardDist(object)
# Building the model
# Use the similar number of dimensions as shown in tutorial https://github.com/ManchesterBioinference/Scasat/blob/master/ScAsAT_functions_Buenrostro_All_Bam_Together.ipynb
fit <- stats::cmdscale(as.dist(object),eig=TRUE, k=15)
# Dimension reduction
feature <- as.matrix(t(fit$points))
ret[['feature']] <- feature
# Running clustering
if(!clustering == 'none'){
ret[['clustering']] <- runClustering(sc = sc$sc,feature = feature,clustering = clustering, method = 'Scasat')
}
# Stopping the clock
ret[['time']] <- difftime(Sys.time(),start_time,units = 'min')[[1]]
# Plots
ret[['umap']] <- plot_umap(x = run_umap(feature), labels = ret[['true']],
title = title,legend.title = legend.title,
shape = shape, shape.title = shape.title)
},
error = function(cond){assign('ret',errorCatch(cond,true = SummarizedExperiment::colData(sc$sc)$Cluster,peaks = sc$peaks,method = 'Scasat'),inherits = TRUE)}
)
if(returnSc){
ret[['sc']] <- sc
}
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.