Description Details References See Also Examples
An R package to facilitate Bayesian analysis using JAGS (Just Another Gibbs Sampler).
In short an analysis proceeds first by the
definition of the JAGS model in BUGS code using
the jags_model
function. Multiple models can be
combined in a single jags_model
object using combine
.
Next the resultant jags_model
object is passed together with
a data set to
the jags_analysis
function which calls the JAGS software to
perform the actual MCMC
sampling. The resultant jags_analysis
object can then be passed
to the plot.jags_analysis
function to view the MCMC traces, the
convergence
function to check the Rhat values of individual parameters
and the coef.jags_analysis
function to get the parameter estimates
with credible limits. The predict.jags_analysis
function can
then be used to extract derived parameter estimates with credible intervals
from a jags_analysis
object without the need for further
MCMC sampling.
Options are queried and set using the opts_jagr
function.
Plummer M (2012) JAGS Version 3.3.0 User Manual http://sourceforge.net/projects/mcmc-jags/files/Manuals/
jags_model
,
jags_analysis
and opts_jagr
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | mod <- jags_model("
model {
bLambda ~ dlnorm(0,10^-2) # $\\lambda$
for (i in 1:length(x)) {
x[i]~dpois(bLambda)
}
}")
dat <- data.frame(x = rpois(100,1))
an <- jags_analysis (mod, dat, mode = "demo")
plot(an)
convergence(an)
coef(an)
coef(an, latex = TRUE)
summary(an)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.