output$methodsHD <- renderUI({
if(is.null(input$dataFile))
return(NULL)
selectInput(
"selMethHD",
label = "Select method",
choices = methList,
multiple = FALSE
)
})
output$plotHistDist <- renderPlot({
validate(
need(
!is.null(input$dataFile),
'Please choose a datafile !'
)
)
if(!is.null(outSel()) &
input$removeGlobOut) {
Errors = Errors[ !outSel(), ]
Data = Data[ !outSel(), ]
systems= systems[ !outSel() ]
}
gpLoc = gPars
gpLoc$pty = 'm'
x = Data[ ,input$selMethHD,drop = FALSE]
y = Errors[ ,input$selMethHD,drop = FALSE]
if (input$corTrendHD)
y = trendCorr(x, y, input$cthdDegree)
nclass = input$nbClass
if(nclass == 0)
nclass = nclass.scott(y)
plotDistHist(
unlist(x), unlist(y),
uy = NULL,
nclass = nclass, # Nb class for histogram
xlab = paste0('Data [',dataUnits(),']'),
ylab = paste0('Errors [',dataUnits(),']'),
plotGauss = input$normHD, # Plot Gaussian fit of hist.
outLiers = input$outHD, # Mark outliers
p = 0.95, # Width of proba interval to detect outliers
labels = systems,
select = NULL, # Indices of points to colorize
main = input$selMethHD,
plotReg = input$regHD, # Regression line
plotConf = input$regHD, # Confidence limits on reg-line
degree = if(input$corTrendHD) 1 else input$cthdDegree,
# Basic trend line if already corrected
plotBA = input$baHD, # Bland-Altman LOAs
plotBAci = input$baCI, # 95% CI on Bland-Altman LOAs
xlim = c(min(x),1.1*max(x)),# Leave space for labels
ylim = if(input$yScale) range(Errors) else range(y),
scaleLegBA= 1,
gPars = gpLoc
)
},
width = plotWidth, height = plotHeight)
output$plotlyHistDist <- renderPlotly({
validate(
need(
!is.null(input$dataFile),
'Please choose a datafile !'
),
need(
!is.null(input$selMethHD) &
input$selMethHD %in% methList,
'Please choose a method !'
)
)
if(!is.null(outSel()) &
input$removeGlobOut) {
Errors = Errors[ !outSel(), ]
Data = Data[ !outSel(), ]
systems = systems[ !outSel() ]
}
gpLoc = gPars
gpLoc$pty = 'm'
x = Data[ ,input$selMethHD,drop = FALSE]
y = Errors[ ,input$selMethHD,drop = FALSE]
if (input$corTrendHD)
y = trendCorr(x, y, input$cthdDegree)
nclass = input$nbClass
if(nclass == 0)
nclass = nclass.FD(unlist(y))
plotlyDistHist(
unlist(x), unlist(y),
uy = NULL,
nclass = nclass, # Nb class for histogram
xlab = paste0(input$selMethHD,' Data [',dataUnits(),']'),
ylab = paste0('Errors [',dataUnits(),']'),
plotGauss = input$normHD, # Plot Gaussian fit of hist.
outLiers = input$outHD, # Mark outliers
p = 0.95, # Width of proba interval to detect outliers
labels = systems,
select = NULL, # Indices of points to colorize
# main = input$selMethHD,
plotReg = input$regHD, # Regression line
plotConf = input$regHD, # Confidence limits on reg-line
degree = if(input$corTrendHD) 1 else input$cthdDegree,
# Basic trend line if already corrected
plotBA = input$baHD, # Bland-Altman LOAs
plotBAci = input$baCI, # 95% CI on Bland-Altman LOAs
xlim = c(min(x),1.1*max(x)),# Leave space for labels
ylim = if(input$yScale) range(Errors) else range(y),
scaleLegBA= 1,
gPars = gpLoc
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.