K <- reactiveVal(1)
dataUnits <- reactiveVal()
bsList <- reactiveVal()
output$selectMsg <- renderPrint({
if(is.null(input$dataFile)) {
cat('Expected datafile format (.csv):\n\n')
cat('"","Ref","Meth1","Meth2",...,"MethN"\n')
cat('"Syst1","0.1","0.2","0.3",...,"0.4"\n')
cat('...\n')
cat('"SystM","0.5","0.6","0.7",...,"0.8"\n\n')
return()
}
cat('Data set : ', input$dataFile[['name']],'\n\n')
data = data.table::fread(
file=input$dataFile$datapath,
header=TRUE,
data.table = FALSE)
systems <<- data[,1]
rownames(data) = systems
Ref <<- data[,2]
Data <<- data[,-c(1,2),]
if(ncol(data) == 3) {
# Single method in dataset: force df structure
df = data.frame(data[,-c(1,2)])
colnames(df) = colnames(data)[3]
rownames(df) = systems
Data <<- df
}
methList <<- colnames(Data)
K(length(methList)) # Dynamic size for graphics updates
if(input$useRelative)
Errors <<- (Ref - Data)/Ref
else
Errors <<- Ref - Data
dataUnits(input$units)
if(input$useRelative)
dataUnits('')
cat('Systems : ', length(systems),'\n')
cat('Methods : ', K(),'\n')
cat('Units : ', dataUnits(),'\n')
cat('\n')
cat('> Ref and Data (5 first lines):\n\n')
M = data.table(cbind(Systems = systems, Ref = Ref, Data)[1:5,,drop=FALSE])
print(M, trunc.cols = TRUE,row.names = FALSE)
cat('\n')
cat('> Errors (5 first lines):\n\n')
M = data.table(cbind(Systems = systems, Errors)[1:5,,drop=FALSE])
print(M, trunc.cols = TRUE,row.names = FALSE)
cat('\n')
# [Re]init misc global variables and reactive values
bsList(NULL)
lna = list(bs = NA, bs2 = NA)
rankMat <<- list(mue = lna, q95hd = lna, msip = lna)
})
output$howTo <- renderText({
'<h4>Short help on tabs:</h4>
<ul style="list-style-type:none;">
<li> <b>Data:</b> Choose a csv datafile and
decide if relative errors should be used.
<li> <b>Outliers:</b> Detect and select global outliers using a
parallel plot. If outliers are selected, they are
removed from the dataset for further analyses.
<li> <b>Statistics:</b> Compute summary statistics. Uncertainties
and some statistics are generated by bootstrap.
<li> <b>HistDist:</b> Plot the distribution of errors as function
of calculated data, and errors histograms.
<li> <b>QQ-Plot:</b> qq-plot the distribution of errors.
<li> <b>PDFs:</b> Plot the Probability Density Functions of errors.
<li> <b>ECDFs:</b> Plot the Empirical Cumulated Distribution
Functions of absolute errors.
<li> <b>Lorenz:</b> Plot Lorenz curves, Gini and LAC statistics.
<li> <b>Correlations:</b> Plot the correlation matrices of the
data, errors or statistics.
<li> <b>Ranking:</b> Plot the Ranking Probability matrix.
<li> <b>SIP mat.:</b> Plot the Systematic Improvement Probability matrix.
<li> <b>Delta |Err|:</b> Pairwise stats - ECDF of the difference of
absolute errors and SIP, MG & ML.
<li> <b>UQ:</b> Uncertainty Quantification (Experimental).
</ul>'
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.