plotAGV: Adversarial Group Calibration based on the Scal statistic

View source: R/plotAGVZMS.R

plotAGVR Documentation

Adversarial Group Calibration based on the Scal statistic

Description

Adversarial Group Calibration based on the Scal statistic

Usage

plotAGV(
  Z,
  popMin = 50,
  nGroup = 100,
  nMC = 500,
  add = FALSE,
  ylim = NULL,
  col = 6,
  control = TRUE,
  colControl = 2,
  stat = c("max", "mean", "median", "q95"),
  dist = c("Normal", "Uniform", "Normpn", "Normp4", "Laplace", "T4", "Student"),
  df = 4,
  title = "",
  label = 0,
  legend = TRUE,
  gPars = ErrViewLib::setgPars()
)

Arguments

Z

(vector) set of z-score values to be tested

popMin

(integer) minimal bin count in an interval

nGroup

(integer) number random groups sampled to select worst one

nMC

(integer) number of repeats for worst group selection

add

(logical) add to previous graph ?

ylim

(vector) limits of the y axis

col

(integer) color index of main curve

control

(logical) estimate AGV for control sample (normal-standard)

colControl

(integer) color index of control curve

dist

(string) model error distribution to generate the control values. One of 'Normal' (default), 'Uniform', 'Normpn', Normp4', 'Laplace', 'Tn' or 'T4'

df

(integer) degrees of freedom for distributions 'Normpn' and 'Tn'

title

(string) a title to display above the plot

label

(integer) index of letter for subplot tag

legend

(logical) add a legend (default: TRUE) ?

gPars

(list) graphical parameters

method

(string) method used to estimate 95 percent CI on <Z^2>

Value

Nothing.

Examples


  uE  = sqrt(rchisq(1000, df = 4))  # Re-scale uncertainty
  E   = rnorm(uE, mean=0, sd=uE)    # Generate errors
  plotAGV(E/uE)


ppernot/ErrViewLib documentation built on June 1, 2024, 4:33 a.m.