plotAGV | R Documentation |
Adversarial Group Calibration based on the Scal statistic
plotAGV(
Z,
popMin = 50,
nGroup = 100,
nMC = 500,
add = FALSE,
ylim = NULL,
col = 6,
control = TRUE,
colControl = 2,
stat = c("max", "mean", "median", "q95"),
dist = c("Normal", "Uniform", "Normpn", "Normp4", "Laplace", "T4", "Student"),
df = 4,
title = "",
label = 0,
legend = TRUE,
gPars = ErrViewLib::setgPars()
)
Z |
(vector) set of z-score values to be tested |
popMin |
(integer) minimal bin count in an interval |
nGroup |
(integer) number random groups sampled to select worst one |
nMC |
(integer) number of repeats for worst group selection |
add |
(logical) add to previous graph ? |
ylim |
(vector) limits of the y axis |
col |
(integer) color index of main curve |
control |
(logical) estimate AGV for control sample (normal-standard) |
colControl |
(integer) color index of control curve |
dist |
(string) model error distribution to generate the control values. One of 'Normal' (default), 'Uniform', 'Normpn', Normp4', 'Laplace', 'Tn' or 'T4' |
df |
(integer) degrees of freedom for distributions 'Normpn' and 'Tn' |
title |
(string) a title to display above the plot |
label |
(integer) index of letter for subplot tag |
legend |
(logical) add a legend (default: TRUE) ? |
gPars |
(list) graphical parameters |
method |
(string) method used to estimate 95 percent CI on <Z^2> |
Nothing.
uE = sqrt(rchisq(1000, df = 4)) # Re-scale uncertainty
E = rnorm(uE, mean=0, sd=uE) # Generate errors
plotAGV(E/uE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.