plotAGVZMS | R Documentation |
Adversarial Group Validation of calibration based on the fraction of validated confidence intervals of the <Z^2> statistic
plotAGVZMS(
Z,
popMin = 100,
popMax = length(Z)/10,
mZ2 = 1,
nBoot = 1500,
method = c("bootstrap", "stud", "auto"),
BSmethod = c("bca", "perc", "basic"),
nMC = 1000,
add = FALSE,
ylim = NULL,
col = 6,
verbose = FALSE,
control = TRUE,
colControl = 2,
title = "",
label = 0,
gPars = ErrViewLib::setgPars()
)
Z |
(vector) set of z-score values to be tested |
popMin |
(integer) minimal bin count in an interval |
popMax |
(integer) maximal bin count in an interval |
mZ2 |
(numeric) target value for <Z^2> (default '1') |
nBoot |
(integer) number of bootstrap replicas |
method |
(string) method used to estimate 95 percent CI on <Z^2> |
BSmethod |
(string) bootstrap variant |
nMC |
(integer) number of random intervals per size |
add |
(logical) add to previous graph ? |
ylim |
(vector) limits of the y axis |
col |
(integer) color index of main curve |
verbose |
(logical) print progress messages |
control |
(logical) estimate AGV for control sample (normal-standard) |
colControl |
(integer) color index of control curve |
title |
(string) a title to display above the plot |
label |
(integer) index of letter for subplot tag |
gPars |
(list) graphical parameters |
Invisibly returns a list of worst stats. Mainly used for its plotting side effect.
uE = sqrt(rchisq(1000, df = 4)) # Re-scale uncertainty
E = rnorm(uE, mean=0, sd=uE) # Generate errors
plotAGVZMS(E/uE, method = 'stud')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.