test_that("The function provides numeric and graphic objects", {
# Setting test results
file <- system.file("extdata", "acc.agd", package = "activAnalyzer")
mydata <- prepare_dataset(data = file)
mydata_with_wear_marks <- mark_wear_time(
dataset = mydata,
TS = "TimeStamp",
to_epoch = 60,
cts = "vm",
frame = 90,
allowanceFrame = 2,
streamFrame = 30
)
mydata_with_intensity_marks <- mark_intensity(
data = mydata_with_wear_marks,
col_axis = "vm",
equation = "Sasaki et al. (2011) [Adults]",
sed_cutpoint = 200,
mpa_cutpoint = 2690,
vpa_cutpoint = 6167,
age = 32,
weight = 67,
sex = "male",
)
list_test_1 <-
compute_accumulation_metrics(
data = mydata_with_intensity_marks,
behaviour = "sed",
dates = c("2021-04-07", "2021-04-08", "2021-04-09", "2021-04-10", "2021-04-11"),
valid_wear_time_start = "00:00:00",
valid_wear_time_end = "23:59:59",
zoom_from = "00:00:00",
zoom_to = "23:59:59"
)
list_test_2 <-
compute_accumulation_metrics(
data = mydata_with_intensity_marks,
behaviour = "pa",
dates = NULL,
valid_wear_time_start = "00:00:00",
valid_wear_time_end = "23:59:59",
zoom_from = "12:00:00",
zoom_to = "13:30:30"
)
# Setting reference dataframe
df_actual <- data.frame(
mean_breaks = 68.6,
alpha = 2.18,
MBD = 2,
UBD = 7.56,
gini = 0.57
)
# Tests_1
expect_s3_class(list_test_1$metrics, "data.frame")
expect_s3_class(list_test_1$p_breaks, "ggplot")
expect_s3_class(list_test_1$p_alpha, "ggplot")
expect_s3_class(list_test_1$p_MBD, "ggplot")
expect_s3_class(list_test_1$p_UBD, "ggplot")
expect_s3_class(list_test_1$p_gini, "ggplot")
expect_equal(list_test_1$metrics, df_actual)
expect_s3_class(list_test_2$metrics, "data.frame")
expect_s3_class(list_test_2$p_breaks, "ggplot")
expect_s3_class(list_test_2$p_alpha, "ggplot")
expect_s3_class(list_test_2$p_MBD, "ggplot")
expect_s3_class(list_test_2$p_UBD, "ggplot")
expect_s3_class(list_test_2$p_gini, "ggplot")
})
test_that("The function provides numeric and graphic objects even with customized variable
names", {
# Setting test results
file <- system.file("extdata", "acc.agd", package = "activAnalyzer")
mydata <- prepare_dataset(data = file) %>% dplyr::rename(TIMESTAMP = "TimeStamp")
mydata_with_wear_marks <- mark_wear_time(
dataset = mydata,
TS = "TIMESTAMP",
to_epoch = 60,
cts = "vm",
frame = 90,
allowanceFrame = 2,
streamFrame = 30
) %>% dplyr::rename(TIME = "time", NON_WEARING_COUNT = "non_wearing_count", WEARING_COUNT = "wearing_count")
mydata_with_intensity_marks <- mark_intensity(
data = mydata_with_wear_marks,
col_axis = "vm",
col_time = "TIME", col_nonwear = "NON_WEARING_COUNT", col_wear = "WEARING_COUNT",
equation = "Sasaki et al. (2011) [Adults]",
sed_cutpoint = 200,
mpa_cutpoint = 2690,
vpa_cutpoint = 6167,
age = 32,
weight = 67,
sex = "male",
) %>%
dplyr::mutate(
kcal = 2 # set dummy data for easier calculations
)
list_test <-
compute_accumulation_metrics(
data = mydata_with_intensity_marks,
col_time = "TIME",
behaviour = "sed",
dates = c("2021-04-07", "2021-04-08", "2021-04-09", "2021-04-10", "2021-04-11"),
valid_wear_time_start = "00:00:00",
valid_wear_time_end = "23:59:59",
zoom_from = "00:00:00",
zoom_to = "23:59:59"
)
# Setting reference dataframe
df_actual <- data.frame(
mean_breaks = 68.6,
alpha = 2.18,
MBD = 2,
UBD = 7.56,
gini = 0.57
)
# Tests
expect_s3_class(list_test$metrics, "data.frame")
expect_s3_class(list_test$p_breaks, "ggplot")
expect_s3_class(list_test$p_alpha, "ggplot")
expect_s3_class(list_test$p_MBD, "ggplot")
expect_s3_class(list_test$p_UBD, "ggplot")
expect_s3_class(list_test$p_gini, "ggplot")
expect_equal(list_test$metrics, df_actual)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.