EPlasso: Performs l1-regularized estimation of an inverse covariance...

Description Usage Arguments Value Examples

View source: R/EPlasso.R

Description

This function implements a simple coordinate descent algorithm to find the maximum likelihood estimator over Gaussian MTP2 distributions. For details see Lauritzen, Uhler, Zwiernik (2017).

Usage

1
EPlasso(S, lambda, tol = 1e-07, pos.constr = TRUE)

Arguments

S

the sample covariance matrix

lambda

positive penalty

tol

the convergence tolerance (default tol=1e-8)

pos.constr

if TRUE (default) assumes nnonnegative correlations, if FALSE performs the standard dual graphical lasso.

Value

the optimal value of the concentration matrix

the number of iterations the algorithm needed to converge

the corresponding value of the log-likelihood

Examples

1

pzwiernik/mtp2 documentation built on Aug. 9, 2020, 12:34 p.m.