golazo: Performs Graphical Oriented LAZy Optimization by optimizing...

Description Usage Arguments Value Examples

View source: R/golazo.R

Description

This function implements a simple block-coordinate descent algorithm to find the maximum of the regularized Gaussiann log-likelihood with a an assymetric penalty of lasso type.

Usage

1
2
3
4
5
6
7
8
9
golazo(
  S,
  rho = NULL,
  L = NULL,
  U = NULL,
  tol = 1e-07,
  pos.constr = TRUE,
  output = TRUE
)

Arguments

S

the sample covariance matrix

rho

positive penalty (can be Inf)

L

matrix of lower penalties (can be -Inf)

U

matrix of upper penalties (can be Inf)

tol

the convergence tolerance (default tol=1e-8)

pos.constr

if TRUE (default) penalizes positive K_ij, if FALSE performs the standard dual graphical lasso.

output

if TRUE (default) the output will be printed.

Value

the optimal value of the concentration matrix

the number of iterations the algorithm needed to converge

the corresponding value of the log-likelihood

Examples

1

pzwiernik/mtp2 documentation built on Aug. 9, 2020, 12:34 p.m.