Description Usage Arguments Value Examples
This function implements a simple coordinate descent algorithm to find the maximum likelihood estimator over Gaussian MTP2 distributions. For details see Lauritzen, Uhler, Zwiernik (2017).
1 |
S |
the sample covariance matrix |
n |
the sample size (default 1), relevant for testing |
K0 |
the starting point (default K0=solve(diag(diag(S)))) |
tol |
the convergence tolerance (default tol=1e-8) |
the optimal value of the concentration matrix
the number of iterations the algorithm needed to converge
the corresponding value of the log-likelihood
1 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.