ggvpc_standard: VPC plot using ggplot2 (standard)

View source: R/ggvpc_standard.r

ggvpc_standardR Documentation

VPC plot using ggplot2 (standard)

Description

Plot basic vpc with 95% PI and observed data. This call is to be extended with for stratification, and axes definition using the layering custom to ggplot2 objects. See the examples below to learn more.

Usage

ggvpc_standard(
  vpc,
  PI = c(0.025, 0.975),
  area.col = PI.ci.med.arcol,
  linecol.obs.central = PI.real.med.col,
  linetype.obs.central = "solid",
  linetype.obs.outer = "dashed",
  linecol.obs.outer = "darkslategrey",
  linesize.obs = 0.5,
  alpha = 0.33,
  point.shape = 1,
  point.size = 1.5,
  point.col = "darkslategrey",
  yrange.stretch = c(0.9, 1.1),
  quiet = TRUE
)

Arguments

vpc

output from nm.read.vpc

PI

prediction interval (c(0.025,0.975) for 95% CI)

area.col

color of prediction polygon

linecol.obs.central

color of observed central lines

linetype.obs.central

line type of observed central lines

linetype.obs.outer

line type of observed outer lines

linecol.obs.outer

line color of observed outer lines

linesize.obs

line width of observed data

alpha

transparancy scalar (between 0 and 1)

point.shape

numeric value for dot shape

point.size

numeric value for dot size

point.col

color of observed data dots

yrange.stretch

vector of c(min,max) which will proportionally rescale the lower and upper limits of the Y axis

quiet

whether to suppress process messages

Value

A ggplot object to be extended optionally

Note

Editing and stratification to be done by adding ggplot layer

See Also

nm.read.vpc, ggvpc_xpose

Examples

library(ggplot2)
vpc.all = nm.read.vpc(path = file.path(getOption("qpExampleDir"), "vpc_final_strt"))
ggvpc_standard(vpc.all)

ggvpc_standard(vpc.all) +
  labs(x = "Time (h)", y = "Concentration (ng/ml)")

## different Prediction Interval (PI), let's use 90% instead of 95%
ggvpc_standard(vpc.all, PI = c(0.05,0.95)) +
  labs(x = "Time (h)", y = "Concentration (ng/ml)")

## logging axes
ggvpc_standard(vpc.all) +
  labs(x = "Time (h)", y = "Concentration (ng/ml)") + scale_y_log10() + scale_x_log10()

#modify colors and transparency:
ggvpc_standard(vpc.all, area.col = indigo, alpha = 1, point.shape = 15) +
  labs(x = "Time (h)", y = "Concentration (ng/ml)") + scale_y_log10()

## dealing with stratification
myVPC = nm.read.vpc(path = file.path(getOption("qpExampleDir"), "vpc_base_strt"))

p = ggvpc_standard(vpc.all, yrange.stretch = c(1,1))
p = p +  labs(x = "Time (h)", y = "Concentration (ng/ml)")
p +  facet_wrap(~strata) + scale_y_log10()

qPharmetra/qpToolkit documentation built on May 24, 2023, 8:52 a.m.