nlme.vpcplot | R Documentation |
Plot a VPC of an nlme object
## S3 method for class 'vpcplot'
nlme(
object,
vpc,
formula,
obsData = NULL,
xLabel,
yLabel,
xLimits,
yLimits,
logY = FALSE,
color.style = list(observed = rgb(0.2, 0.2, 0.2), central = blue[10], inner = blue[4],
outer = blue[1]),
symbol = list(pch = 15, cex = 0.5),
aspect = 1,
cex.label = 1.5,
nx = NULL,
showPredAs = "area",
showObsDots = TRUE,
showObsLines = TRUE,
obscol.dot = gray[8],
obscex.dot = 0.5,
obspch.dot = 1,
obscol.line = gray[10],
predcol.central = blue[6],
predcol.outer = blue[7],
predcol.area = blue[1],
predcol.inner = blue[3],
...
)
object |
the nlme object (if it's an nlme.run object the input should read |
vpc |
the output from |
formula |
a formula detailing what to plot |
obsData |
the observation data, if not supplied defaults to |
xLabel |
same as xlab |
yLabel |
same as ylab |
xLimits |
same as xlim |
yLimits |
same as ylim |
logY |
logical to log Y axis |
color.style |
list with layout options, such as: |
symbol |
list with elements |
aspect |
trellis banking value (defaults to 1 for sqaure panels) |
cex.label |
tex size for x and y labels (1.5) |
nx |
number of bins for x covariate |
showPredAs |
layout style (defaults to "area" for polygons but could be 'lines' too). |
showObsDots |
logical to showobserved dots (T) |
showObsLines |
logical to show quantile lines of observed (T) |
obscol.dot |
color of observed dot |
obscex.dot |
symbol size |
obspch.dot |
type of symbol |
obscol.line |
observed line color |
predcol.central |
predicted central tendency color |
predcol.outer |
predicted outer polygon color |
predcol.area |
predicted overall polygon color |
predcol.inner |
predicted inner polygon (IQR) color |
... |
any additional arguments passed on to the lattice call |
A VPC plot.
nlme.vpc
, nlme.extract
# library(nlme)
pkpdData = example.pkpdData()
EFF.1comp.1abs <- function(dose, tob, cl, v, ka, keo)
{
# Effect-site concentration for 1-compartment model, 1st-order absorption
kel = cl / v
# Define coefficients
A = 1/(kel-ka) / (keo-ka)
B = 1/(ka-kel) / (keo-kel)
C = 1/(ka-keo) / (kel-keo)
# Return effect-site concentration
dose*ka*keo/v * (A*exp(-ka*tob) + B*exp(-kel*tob) + C*exp(-keo*tob))
}
fit.PD004.nlme = nlme.run(
model = value ~ base + EFF.1comp.1abs(dose, time, cl * exp(cl.eta), v, ka, keo),
data = pkpdData[pkpdData$type == "PD" & pkpdData$dose > 0 & pkpdData$value > 0.5, ],
fixed = base + cl + v + ka + keo ~ 1,
random = cl.eta ~ 1,
groups = ~ id,
start = c(base = 1, cl = 1, v = 10, ka = 1, keo = 0.01),
problem = "True Model",
reference = 4)
summary(fit.PD004.nlme$object)
nlme.extract(fit.PD004.nlme$object)$table
vpc.PD004.nlme = nlme.vpc(fit.PD004.nlme$object, nrep = 100)
nlme.vpcplot(fit.PD004.nlme$object, vpc.PD004.nlme)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.