nm.read.vpc | R Documentation |
Parses the output from PsN's vpc and prepares it for plotting.
nm.read.vpc(
path = getOption("nmDir"),
vpc_results = "vpc_results.csv",
vpctab = dir(path = path, pattern = "^vpctab")[1],
PI.limits = c(0.025, 0.05, 0.1, 0.3, 0.7, 0.9, 0.95, 0.975),
PI.ci.area.smooth = FALSE
)
path |
directory where vpc_results.csv and vpctab files reside |
vpc_results |
file name of summarized VPC results. Defaults to vpc_results.csv |
vpctab |
filename of observed data table. Defaults to vpctab |
PI.limits |
what prediction interval stats should be read from the VPC output files |
PI.ci.area.smooth |
if TRUE the center of the interval of the independent variable will be used. This will create smooth VPC plots, the same way as xpose does. (defaults to FALSE) |
A list of data frames 'obs', 'vpc, and 'res'
Please note that qPharmetra's default VPC plot tool is xpose.VPC. Use this function with the ggvpc
functions in case one needs more flexibility to post-process results before plotting, and when stratifcation by more than one variable is needed.
ggvpc_xpose
, ggvpc_standard
, read.vpc
myVPC = nm.read.vpc(path = file.path(getOption("qpExampleDir"), "vpc_final_strt"))
unique(myVPC$vpc$strata)
unique(myVPC$obs$strata)
# they match nicely
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.