ThetaMater.M0: ThetaMater.M0: (Bayesian Model 1) Simple MCMC algorithm to...

View source: R/ThetaMater.M0.R

ThetaMater.M0R Documentation

ThetaMater.M0: (Bayesian Model 1) Simple MCMC algorithm to estimate the posteriori distribution of theta from genomic data

Description

This function returns a list of each step in the MCMC sampling chain

Usage

ThetaMater.M0(k.vec, l.vec, n.vec, c.vec, ngens)

Arguments

k.vec

Vector of mutation counts

l.vec

Vector of locus lengths

n.vec

Vector of sample numbers

c.vec

Vector of data pattern counts

ngens

Number of generations to run the MCMC

Examples

sim.results <- Coal.Theta.Sim.File(theta = .9/10, n.vec = c(5,5), l.vec = c(100,100), num.loci = 1000, out.file = '~/Desktop/example.alleles')
example.data <- Read.AllelesFile.Threshold(alleles.file = '~/Desktop/example.alleles', threshold = 1000, log.file = '~/Desktop/log.txt')
Theta.Posterior <- MCMC.Theta.M1.R(k.vec = example.data$k.vec, l.vec = example.data$l.vec, n.vec = example.data$n.vec, c.vec = example.data$c.vec, ngens = 10000)


radamsRHA/ThetaMater documentation built on April 25, 2024, 10:11 a.m.