Description Usage Arguments Value References See Also Examples
Updates the 'Mclust'
output such that the optimal model is selected in accordance to the Singular BIC (sBIC) criterion. The class remains unchanged so that other functions and methods from package mclust can be applied. Note, that some details such as plot titles or axis labels might not be adjusted.
1 | MclustSBICupdate(object,...)
|
object |
An object of class |
Return an object of class 'Mclust'
providing the optimal (according to sBIC) mixture model estimation.
Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 289-317.
Drton M. and Plummer M. (2017) A Bayesian information criterion for singular models, Journal of the Royal Statistical Society, Series B, 79, Part 2, pp. 323-380.
Fraley C. and Raftery A. E. (2002) Model-based clustering, discriminant analysis and density estimation, Journal of the American Statistical Association, 97/458, pp. 611-631.
Fraley C., Raftery A. E., Murphy T. B. and Scrucca L. (2012) mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
mclustSBIC
,
mclustMaxLik
,
mclustSBIClearnCoeff
,
nMclustParamsComp
,
nMclustParamsShared
,
priorControl
,
emControl
,
mclustModel
,
summary.mclustSBIC
,
hc
,
me
,
mclustModelNames
,
mclust.options
1 2 3 4 5 6 7 8 9 10 11 12 13 | X <- iris[,-length(iris)]
b <- mclustBIC(X)
modelBIC <- Mclust(X, x = b)
plot(modelBIC, what="BIC")
modelSBIC <- MclustSBICupdate(modelBIC)
# now plot the sBIC values
# note, using the class 'Mclust' implies the y-axis label 'BIC'
# however, since MclustSBICupdate was applied, the plotted values truly are the sBIC
plot(modelSBIC, what="BIC")
modDR = MclustDR(modelSBIC)
plot(modDR,what = "classification")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.