Description Usage Arguments Value References See Also Examples
Computes the number of parameters specific to each component distribution for a given parameterized Gaussian mixture model, that is not counting the mixture parameters.
1 2 | nMclustParamsComp <- function (modelName, d,
...)
|
modelName |
A character string indicating the model to be fitted
in the EM phase of clustering. The help file for
|
d |
Number of variables in the data. |
... |
Catches unused arguments in indirect or list calls via |
Return an object of class 'integer'
, which is the number of parameters specific to each component excluding the mixture parameters.
Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 289-317.
Drton M. and Plummer M. (2017) A Bayesian information criterion for singular models, Journal of the Royal Statistical Society, Series B, 79, Part 2, pp. 323-380.
Fraley C. and Raftery A. E. (2002) Model-based clustering, discriminant analysis and density estimation, Journal of the American Statistical Association, 97/458, pp. 611-631.
Fraley C., Raftery A. E., Murphy T. B. and Scrucca L. (2012) mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
mclustSBIC
,
mclustMaxLik
,
mclustSBIClearnCoeff
,
nMclustParamsShared
,
priorControl
,
emControl
,
mclustModel
,
summary.mclustBIC
,
hc
,
me
,
mclustModelNames
,
mclust.options
1 | irisParamsComp = nMclustParamsComp(modelName = 'VEV', d = ncol(iris[,-5]))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.