Description Usage Arguments Value References See Also Examples
Extension of BIC for parameterized Gaussian mixture models fitted by EM algorithm initialized by model-based hierarchical clustering. This modified BIC resolves the difficulties connected to singular model selection problems, i.e. problems that involve models with Fisher information matrices that may fail to be invertable.
1 2 3 4 5 6 7 |
data |
A numeric vector, matrix, or data frame of observations. Categorical variables are not allowed. If a matrix or data frame, rows correspond to observations and columns correspond to variables. |
G |
An integer vector specifying the numbers of mixture components
(clusters) for which the sBIC is to be calculated.
The default is |
modelNames |
A vector of character strings indicating the models to be fitted
in the EM phase of clustering. The help file for
unless the argument |
restart |
Number of different random restarts of the EM algorithm. This is
invoked only when the default optimization used in the function
|
initialization |
A list containing zero or more of the following components:
|
x |
An object of class |
dir |
Determines Dirichlet prior parameter to φ = dir * (r/2 + 1) + r/2, where r is the number of parameters for each mixture component. It is a prior for the distribution of the random vector of mixture weights. |
... |
Catches unused arguments in indirect or list calls via |
Return an object of class 'mclustBIC'
, a matrix containing the Singular Bayesian Information
Criterions for the respective number of mixture components (rows) and model (columns).
Auxiliary information returned as attributes.
The corresponding print
method shows the matrix of values and the top three models according to the sBIC criterion.
Scrucca L., Fop M., Murphy T. B. and Raftery A. E. (2016) mclust 5: clustering, classification and density estimation using Gaussian finite mixture models, The R Journal, 8/1, pp. 289-317.
Drton M. and Plummer M. (2017) A Bayesian information criterion for singular models, Journal of the Royal Statistical Society, Series B, 79, Part 2, pp. 323-380.
Fraley C. and Raftery A. E. (2002) Model-based clustering, discriminant analysis and density estimation, Journal of the American Statistical Association, 97/458, pp. 611-631.
Fraley C., Raftery A. E., Murphy T. B. and Scrucca L. (2012) mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical Report No. 597, Department of Statistics, University of Washington.
mclustMaxLik
,
mclustSBIClearnCoeff
,
nMclustParamsComp
,
nMclustParamsShared
,
priorControl
,
emControl
,
mclustModel
,
summary.mclustSBIC
,
hc
,
me
,
mclustModelNames
,
mclust.options
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | irisSBIC <- mclustSBIC(iris[,-5])
irisSBIC
plot(irisSBIC)
## Not run:
subset <- sample(1:nrow(iris), 100)
irisSBIC <- mclustSBIC(iris[,-5], initialization=list(subset = subset))
irisSBIC
plot(irisSBIC)
irisSBIC1 <- mclustSBIC(iris[,-5], G=seq(from=1,to=9,by=2),
modelNames=c("EII", "EEI", "EEE"))
irisSBIC1
plot(irisSBIC1)
irisSBIC2 <- mclustSBIC(iris[,-5], G=seq(from=2,to=8,by=2),
modelNames=c("VII", "VVI", "VVV"), x= irisSBIC1)
irisSBIC2
plot(irisSBIC2)
## End(Not run)
nNoise <- 450
set.seed(0)
poissonNoise <- apply(apply( iris[,-5], 2, range), 2, function(x, n)
runif(n, min = x[1]-.1, max = x[2]+.1), n = nNoise)
set.seed(0)
noiseInit <- sample(c(TRUE,FALSE),size=nrow(iris)+nNoise,replace=TRUE,
prob=c(3,1))
irisNdata <- rbind(iris[,-5], poissonNoise)
irisNsbic <- mclustSBIC(data = irisNdata, G = 1:5,
initialization = list(noise = noiseInit))
irisNsbic
plot(irisNsbic)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.