Description Usage Arguments Value Examples
View source: R/main_functions.R
Fit the sparse group-subgroup lasso (SGSL)
1 2 3 4 5 6 7 8 9 10 11 12 |
x |
p by N matrix of predictors (N: sample size, p: number of predictors) |
y |
1 by N matrix of response variable |
type |
One of "lasso" (for the standard lasso), "group" (for the group lasso), "ggroup" (for the group lasso among subgroups), "ggroupind" (for the lasso with individual features), "sgsl" (for the sparse-group-subgroup lasso) or "groupsgl (for the sparse group lasso at subgroup level). |
index.subgroup |
index for subgroups |
tau |
multiplier for using a multiplicative grid for penalty parameter lambda, starting at maximal lambda value |
delta |
Among the lasso solution path, the best descriptive model is the one which minimizes the loss function: (residual sum of squares)/(estimator of the model error variance) - (sample size) + delta*(number of predictors in the selected model). If delta = 2, this loss function is Mallows' Cp. |
delta.group |
delta applied to C_p criterion for group lasso |
delta.subgroup |
delta applied to C_p critierian for group lasso among subgroups |
delta.ind |
delta applied to C_p criterion for lasso with individual features |
standardize |
logical. TRUE for standardizing the data. |
out: indicators of the selected predictors. 1 for selected predictors and 0 for not selected predictors
1 2 3 4 5 6 7 8 9 10 11 | set.seed(1)
x <- matrix(rnorm(360), nrow=12)
y <- 0.5*x[1,] + 0.5*x[2,] + 1.0*x[4,] + matrix(rnorm(30), nrow=1)
index.subgroup <- matrix(NA,nrow=3,ncol=12)
index.subgroup[1,1:2]=1; index.subgroup[1,3:4]=2
index.subgroup[2,5:6]=3; index.subgroup[2,7:8]=4
index.subgroup[3,9:10]=5; index.subgroup[3,11:12]=6
out_lasso <- sgsl(x,y,type="lasso",index.subgroup = index.subgroup)
out_group <- sgsl(x,y,type="group",index.subgroup = index.subgroup,tau=0.94)
out_ggroup <- sgsl(x,y,type="ggroup",index.subgroup = index.subgroup,tau=0.94)
out_ggroupind <- sgsl(x,y,type="ggroupind",index.subgroup = index.subgroup,tau=0.94)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.