test_overview <- function() {
# Esci in excel - independent groups from summary data example ----------
# Setup
means <- c(37.5, 31.9, 41.2, 33.4, 29.9, 38.3)
sds <- c(10, 13.5, 14.8, 10, 8.7, 10)
ns <- c(19, 19, 19, 19, 19, 19)
grouping_variable_levels <- c(
"NFree10", "AFree10", "ADiet10", "NFree17", "AFree17", "ADiety17"
)
contrast <- c(1/2, 1/2, -1/3, -1/3, -1/3, 0)
# Check - match esci with 95% CI
estimate_mdiff_ind_contrast(
means = means,
sds = sds,
ns = ns,
contrast = contrast,
grouping_variable_levels = grouping_variable_levels,
assume_equal_variance = TRUE
)
# For difference, should return -0.1333 95% CI [-4.8573, 4.5906]
# Check - match esci with 99% CI
estimate_mdiff_ind_contrast(
means = means,
sds = sds,
ns = ns,
contrast = contrast,
grouping_variable_levels = grouping_variable_levels,
outcome_variable_name = "% time near target",
grouping_variable_name = "Condition",
conf_level = 0.99,
assume_equal_variance = TRUE
)
# For difference, should return -0.1333 95% CI [-6.3824, 6.11572]
rattan_motivation <- c(
5.5 ,
5 ,
5.5 ,
6 ,
1 ,
2.5 ,
4.5 ,
1 ,
3.5 ,
1.5 ,
5.5 ,
6 ,
1.5 ,
1 ,
3.5 ,
2.5 ,
3 ,
1 ,
2 ,
6 ,
4.5 ,
4.5 ,
6 ,
7 ,
3 ,
7 ,
3.5 ,
5 ,
4.5 ,
5.5 ,
6.5 ,
6 ,
6 ,
7 ,
5.5 ,
6 ,
2.5 ,
4.5 ,
3.5 ,
6 ,
5 ,
6 ,
3.5 ,
4 ,
3 ,
5.5 ,
3 ,
6 ,
3 ,
5 ,
6 ,
6.5 ,
3.5 ,
2
)
rattan_score <- c(
73,
88,
97,
65,
67,
87,
94,
45,
88,
77,
68,
98,
99,
78,
69,
35,
54,
53,
89,
78,
99,
86,
79,
85,
69,
87,
98,
97,
96,
95,
76,
79,
78,
65,
57,
85,
48,
34,
65,
43,
55,
47,
86,
43,
26,
54,
53,
38,
43,
26,
45,
23,
44,
55
)
rattan_condition <- as.factor(
c(
rep("Comfort", 18),
rep("Chaling", 17),
rep("Control", 19)
)
)
rattan <- data.frame(
motivation = rattan_motivation,
score = rattan_score,
condition = rattan_condition,
other_outcome = rnorm(n = 18+17+19, mean = 100, sd = 15)
)
contrast <- c("Comfort" = -1/2, "Chaling" = 1, "Control" = -1/2)
# Check - works with vector
estimate_mdiff_ind_contrast(
outcome_variable = rattan_motivation,
grouping_variable = rattan_condition,
contrast = contrast,
assume_equal_variance = TRUE
)
# Check - works with dataframe
mdiff_contrast <- estimate_mdiff_ind_contrast(
data = rattan,
outcome_variable = motivation,
grouping_variable = condition,
contrast = NULL
)
# Check - works with dataframe
mdiff_contrast <- estimate_mdiff_ind_contrast(
data = rattan,
outcome_variable = motivation,
grouping_variable = condition,
contrast = contrast
)
# Check - Data frame - tidycolumns
estimate_mdiff_ind_contrast(
rattan, motivation, condition,
contrast = contrast
)
# Check - data frame multiple dvs
estimate_mdiff_ind_contrast(
data = rattan,
outcome_variable = c("motivation", "other_outcome"),
grouping_variable = condition,
contrast = contrast
)
# Check - warning if group levels auto-generated
estimate <- estimate_mdiff_ind_contrast(
means = means,
sds = sds,
ns = ns,
contrast = c(1/2, 1/2, -1/3, -1/3, -1/3, 0),
assume_equal_variance = TRUE
)
estimate
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.