Description Usage Arguments Value Author(s) References Examples
These functions provide the joint probability density function and a random generator for the multivariate Box-Cox symmetric class of distributions generated by elliptical copula.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | dmbcsec(
x,
param,
P = NULL,
df = 4,
copula = c("gaussian", "t", "cauchy", "dexponential"),
gen = "NO"
)
rmbcsec(
n,
param,
P = NULL,
d = 2L,
df = NULL,
copula = c("gaussian", "t", "cauchy", "dexponential"),
gen = "NO"
)
## S3 method for class 'mbcsec.data'
print(x, ...)
## S3 method for class 'mbcsec.data'
plot(x, method = c("pearson", "kendall", "spearman"), ...)
|
x |
Vector or matrix of non-negative quantiles. If |
param |
A list that has as components the vectors of marginal
parameters |
P |
Association matrix. If it is specified with |
df |
Degrees of freedom associated with the t copula. |
copula |
Character; informs which distribution in the class of
elliptical distributions should be used to generate the elliptical
copula. Currently, the copulas available are:
Gaussian ( |
gen |
A character or a vector character; specifies the distributions
generating the marginal BCS distributions. If all BCS margins are
generated by the same generating density, it is sufficient to enter only
one character. A table with the current available generating
distributions for the BCS class can be seen in |
n |
Number of random values to return. |
d |
Dimension of the data to be generated. Argument used only in
|
... |
Further arguments for other specific methods. |
method |
A character string passed to the plot method indicating which
correlation coefficient is to be computed. One of |
dmbcsec
returns the evaluated joint density function and
rmbcsec
returns a "mbcsec.data"
object that contains the
observations generated and the specifications for the multivariate
distribution. More specifically, it returns a list with the
following components:
data: Random observations generated from the multivariate
distribution specified via rmbcsec()
.
spec: A list with the distribution specifications:
marginal parameters (param
), association matrix (P
),
degrees of freedom (df
), copula (copula
), and
generating functions for margins (gen
).
Rodrigo M. R. Medeiros <rodrigo.matheus@live.com>
Ferrari, S. L., & Fumes, G. (2017). Box-Cox symmetric distributions and applications to nutritional data. AStA Advances in Statistical Analysis, 101, 321–344.
Vanegas, L. H., & Paula, G. A. (2016). Log-symmetric distributions: statistical properties and parameter estimation. Brazilian Journal of Probability and Statistics, 30, 196–220.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## Not run:
### Sample size and dimension
n <- 500
d <- 3
### Association matrix
P <- matrix(c(1, 0.7, -0.5, 0.7, 1, 0.2, -0.5, 0.2, 1), 3, 3)
### Marginals specifications
# Marginals
gen <- c("NO", "ST", "DE")
# Marginal parameters
param <- list(mu = c(10, 6, 1), sigma = c(0.15, 0.15, 0.1),
lambda = c(-2, 0, 2), nu = c(NA, 2, NA))
### Copula
copula <- "gaussian"
### Generating observations
y <- rmbcsec(n, param, P, d, copula = copula, gen = gen)
y
plot(y)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.