Description Usage Arguments Details Value Author(s) References Examples
Derives quantile residuals of the input model and creates two plots: the first compares density of a standard normal distribution to the residuals' empirical density while the other one is a QQplot.
1 | Qresiduals(model, plot.it = T)
|
model |
a model supported by |
plot.it |
logical, whether to plot the results or not. |
Quantile residuals are defined on a continuous cumulative distribution function; for binomial, beta-binomial, poisson and negative binomial regression models the Randomized quantile residuals are used.
Residuals have an important role inside the global diagnostic of a regression model. Any departure from the standard normal distribution can be considered as a warning that one or more aspects of the model are misspecified. Quantile residuals are particullary useful with models that do not have a continuous response variable, such as a binomial or poisson models; see examples.
invisibly returns the calculated quantile residuals.
Giuseppe Reale
Peter K. Dunn and Gordon K. Smyth (1996). Randomized Quantile Residuals. Journal of Computational and Graphical Statistics.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # Simulate the data
set.seed(10)
n <- 100
x1 <- rt(n, df = 4)
x2 <- rnorm(n, sd = 2)
b <- c(1, .5, .5)
eta <- b[1] + b[2] * x1 + b[3] * x2
prob <- exp(eta)/(1 + exp(eta))
y <- rbinom(n, size = 1, prob = prob)
# The model is correctly specified
mod <- glm(y ~ x1 + x2, family = binomial)
res.p <- residuals(mod, type = 'pearson')
res.d <- residuals(mod, type = 'deviance')
qres <- Qresiduals(mod, plot.it = FALSE)
shapiro.test(res.p) # not normal
shapiro.test(res.d) # not normal
shapiro.test(qres) # normal
y.hat <- fitted(mod)
plot(y.hat, res.p) # uninformative
plot(y.hat, res.d) # uninformative
plot(y.hat, qres)
Qresiduals(mod)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.