#' Create the prediction settings of the simulation
#'
#' @description
#' Create the settings for the development of the internal prediction model.
#'
#' @param fun The name of the function to be called for developing the
#' prediction model
#' @param args A list containing the arguments to be passed on to the
#' function
#'
#' @export
createPredictionSettings <- function(
args,
fun
) {
analysis <- list()
for (name in names(formals(createPredictionSettings))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
#' Create the smoothing settings
#'
#' @description
#' Creates the settings for performing a smooth estimation of benefit
#'
#' @param type The type of smoothing. Can be one of "loess", "rcs" or
#' "locfit", "stratified", "modelBased" or "adaptive".
#' @param label The label of the smoothing approach
#' @param settings Depending on the type of smoothing can be generated from
#' [createLoessSettings()], [createRcsSettings()] or
#' [createLocfitSettings()]
#'
#'@export
createSmoothSettings <- function(
type,
label,
settings
) {
validTypes <- c(
"loess",
"rcs",
"locfit",
"stratified",
"modelBased",
"adaptive"
)
if (!type %in% validTypes) stop("Not a valid type!")
analysis <- list()
for (name in names(formals(createSmoothSettings))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
#' Create the analysis settings
#'
#' @description
#' Creates the more general settings for running the simulation.
#'
#' @param analysisId The id of the analysis.
#' @param threads The number of parallel threads to be considered
#' for running the simulations
#' @param replications The number of replications for runnning the
#' simulation
#' @param validationSize The size of the "true" population size. Used to
#' approximate the "true" performance of the method
#' under study
#' @param seed The seed used to generate the `validationDataset`
#' and the simulated datasets
#' @param description The description of the simulation
#' @param saveDirectory The directory where the results will be stored
#'
#' @export
createAnalysisSettings <- function(
analysisId = "analysis",
threads = 1,
replications = 100,
validationSize = 1e6,
seed = 1,
description = "description",
saveDirectory = getwd()
) {
analysis <- list()
for (name in names(formals(createAnalysisSettings))) {
analysis[[name]] <- get(name)
}
class(analysis) <- "args"
return(analysis)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.