# Load simulated data -----------------------------------------------------
sim_data<- readRDS("sim_data.rds")
# Analysis ----------------------------------------------------------------
# Perform egger test on simulated data ------------------------------------
results_egger <- sim_data %>%
group_by(job_id, scenario_id) %>%
summarize(test_type ="egger",
test_result = egger_test(or_sim, se_lnor, sig_threshold = 0.1))
# Perform Peters test on simulated data -----------------------------------
results_peters <- sim_data %>%
group_by(job_id, scenario_id) %>%
summarize(test_type ="peters",
test_result = peters_test(or_sim, n, a, b, c, d, sig_threshold = 0.1))
# Combine results in long format for plotting -----------------------------
results_both <- bind_rows(results_egger, results_peters)
results_joined <- left_join(results_both, scenarios)
# add publication bias indicator to use as filter for error rates
results_joined %<>%
mutate(pub_bias = (bias_percentage != 0 | bias_type == "p")) %>%
ungroup()
# add error rate (type one error if pub_bias = false & power if pub_bias == true )
results_h0_true <- results_joined %>%
filter(pub_bias== FALSE) %>%
group_by(test_type, scenario_id) %>%
summarise(error_rate = mean(test_result)) %>%
left_join(. ,scenarios) %>%
ungroup()
results_h0_false <- results_joined %>%
filter(pub_bias== TRUE) %>%
group_by(test_type, scenario_id) %>%
summarise(error_rate = mean(test_result)) %>%
left_join(. ,scenarios) %>%
ungroup()
# Save data for plotting --------------------------------------------------
saveRDS(results_h0_true, "results_h0_true.rds")
saveRDS(results_h0_false, "results_h0_false.rds")
# Tabular results ---------------------------------------------------------
power_table <- results_h0_false %>%
group_by(ma_size, odds_ratio, bias_type, test_type) %>%
summarize(power = mean(error_rate))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.