# OREGON VOICES -----------------------------------------------------------
# ├ Overall Participation -------------------------------------------------
# obtn_oregon_voices_random <- read_excel("data-raw/Oregon Voices_County Distributions_6-17-22.xlsx", sheet = "6-17-22") %>%
# clean_names() %>%
# remove_empty() %>%
# select(1:2) %>%
# set_names("geography", "responses") %>%
# mutate(type = "random")
#
# obtn_oregon_voices_engagement <-read_excel("data-raw/Oregon Voices_County Distributions_6-17-22.xlsx", sheet = "6-17-22") %>%
# clean_names() %>%
# remove_empty() %>%
# select(3:4) %>%
# set_names("geography", "responses") %>%
# mutate(type = "engagement")
#
# obtn_oregon_voices_participation <- bind_rows(obtn_oregon_voices_random, obtn_oregon_voices_engagement) %>%
# filter(geography != "Missing") %>%
# filter(geography != "Total")
#
# use_data(obtn_oregon_voices_participation,
# overwrite = TRUE)
# ├ Appreciate About Where They Live ----------------------------------------
# obtn_oregon_voices_appreciation <- read_excel("data-raw/Q5_Q3_Recode_Urban_Rural__group_1_rhh_data.xlsx") %>%
# clean_names() %>%
# select(-percent) %>%
# set_names("response", "group", "group_total", "number") %>%
# mutate(pct = number / group_total)
#
# use_data(obtn_oregon_voices_appreciation,
# overwrite = TRUE)
# ├ Community Pride -------------------------------------------------------
# obtn_oregon_voices_community_pride <- read_excel("data-raw/Rural-Urban Comparison_6-18-22.xlsx",
# sheet = "Q14",
# range = "B2:E8") %>%
# clean_names() %>%
# select(-x4) %>%
# set_names("response", "rural", "urban") %>%
# filter(response != "Total") %>%
# pivot_longer(cols = -response,
# names_to = "group",
# values_to = "pct") %>%
# mutate(response = fct_inorder(response))
#
# use_data(obtn_oregon_voices_community_pride,
# overwrite = TRUE)
# RURALITY ----------------------------------------------------------------
oregon_voices_rurality <- read_rds("data-raw/or_voices.rds") %>%
select(County_Recode, Q3_recode) %>%
set_names("geography", "rurality") %>%
drop_na() %>%
count(geography, rurality) %>%
group_by(geography) %>%
mutate(pct = n / sum(n)) %>%
ungroup() %>%
filter(rurality == "Rural")
use_data(oregon_voices_rurality ,
overwrite = TRUE)
oregon_counties_rurality <- read_excel("data-raw/OBTN Rural Urban.xlsx",
skip = 2) %>%
set_names("geography", "geoid", "designation") %>%
filter(str_length(geoid) == 5) %>%
mutate(geography = str_remove(geography, " County, Oregon"))
obtn_counties_rurality <-
obtn_boundaries_oregon_counties %>%
left_join(oregon_counties_rurality)
use_data(obtn_counties_rurality,
overwrite = TRUE)
oregon_census_tracts_rurality <-
read_excel("data-raw/OBTN Rural Urban.xlsx",
skip = 2) %>%
set_names(c("geography", "geoid", "designation")) %>%
select(-geography) %>%
filter(str_length(geoid) == 11) %>%
mutate(geoid = as.character(geoid))
oregon_census_tracts <- tracts(state = "OR",
year = obtn_year - 2) %>%
clean_names() %>%
select(geoid)
obtn_census_tracts_rurality <- oregon_census_tracts %>%
left_join(oregon_census_tracts_rurality, by = "geoid")
use_data(obtn_census_tracts_rurality,
overwrite = TRUE)
# Census blocks
# or_census_blocks <- blocks(state = "OR",
# year = obtn_year - 2)
# download.file("https://www2.census.gov/geo/tiger/TIGER_RD18/LAYER/TABBLOCK20/tl_rd22_41_tabblock20.zip",
# destfile = "/Users/davidkeyes/Downloads/tl_rd22_41_tabblock20.zip")
#
# or_census_blocks_rurality <- read_sf("/Users/davidkeyes/Downloads/tl_rd22_41_tabblock20/tl_rd22_41_tabblock20.shp") %>%
# clean_names() %>%
# select(ur20) %>%
# rename(urban_rural = ur20)
#
# use_data(or_census_blocks_rurality,
# overwrite = TRUE)
or_voices_rurality <- read_rds("data-raw/or_voices.rds") %>%
select(County_Recode, Q3_recode) %>%
set_names(c("geography", "designation")) %>%
count(geography, designation) %>%
group_by(geography) %>%
mutate(pct_rural = n / sum(n)) %>%
ungroup() %>%
filter(designation == "Rural") %>%
select(geography, pct_rural)
obtn_or_voices_rurality <-
obtn_boundaries_oregon_counties %>%
left_join(or_voices_rurality)
use_data(obtn_or_voices_rurality,
overwrite = TRUE)
# ├ Economic Mobility -------------------------------------------------------
# obtn_economic_mobility <-
# read_excel(here(
# "data-raw",
# "Economic Mobility Data for Oregon Counties 2.10.20.xlsx"
# ),
# range = "A1:D37") %>%
# clean_names() %>%
# rename("geography" = "name") %>%
# mutate(geography = str_remove(geography, " County, OR")) %>%
# mutate(geography = str_trim(geography)) %>%
# pivot_longer(-geography,
# names_to = "family_income_percentile") %>%
# mutate(
# family_income_percentile = case_when(
# str_detect(family_income_percentile, "75th") ~ "75th Percentile",
# str_detect(family_income_percentile, "50th") ~ "50th Percentile",
# str_detect(family_income_percentile, "25th") ~ "25th Percentile"
# )
# ) %>%
# arrange(geography, family_income_percentile) %>%
# # checks
# verify(nrow(.) > 100) %>%
# assert(is.numeric, value) %>%
# assert(in_set(c(
# obtn_oregon_counties, "Rural", "Urban", "Oregon"
# )), geography) %>%
# assert(in_set(c(
# "25th Percentile", "50th Percentile", "75th Percentile"
# )), family_income_percentile) %>%
# assert_rows(col_concat, is_uniq, geography, family_income_percentile) %>%
# assert(within_bounds(0, 1), value)
#
# use_data(obtn_economic_mobility,
# overwrite = TRUE)
# OREGON POVERTY MEASURE --------------------------------------------------
obtn_data_orpm <-
read_csv(here("data-raw/ChildPoverty_CovidProjections.csv")) %>%
select(policy:qtr_childpov_meanpct) %>%
set_names(c("policy", "quarter", "child_poverty_rate"))
use_data(
obtn_data_orpm,
overwrite = TRUE
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.