#' Process SINAN Chagas variables from DataSUS
#'
#' \code{process_sinan_chagas} processes SINAN Chagas variables retrieved by \code{fetch_datasus()}.
#'
#' This function processes SINAN Chagas variables retrieved by \code{fetch_datasus()}, informing labels for categoric variables including NA values.
#'
#' @param data \code{data.frame} created by \code{fetch_datasus()}.
#' @param municipality_data optional logical. \code{TRUE} by default, creates new variables in the dataset informing the full name and other details about the municipality of residence.
#'
#' @examples
#' process_sinan_malaria(sinan_chagas_sample)
#'
#' @return a \code{data.frame} with the processed data.
#'
#' @export
process_sinan_chagas <- function(data, municipality_data = TRUE) {
# Variables names
variables_names <- names(data)
# Use dtplyr
data <- dtplyr::lazy_dt(data)
# TP_NOT
if ("TP_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TP_NOT = dplyr::case_match(
.data$TP_NOT,
"1" ~ "Negativa",
"2" ~ "Individual",
"3" ~ "Surto",
"4" ~ "Agregado",
.default = .data$TP_NOT
)
) %>%
dplyr::mutate(TP_NOT = as.factor(.data$TP_NOT))
}
# DT_NOTIFIC
if ("DT_NOTIFIC" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_NOTIFIC = as.Date(.data$DT_NOTIFIC))
}
# DT_SIN_PRI
if ("DT_SIN_PRI" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_SIN_PRI = as.Date(.data$DT_SIN_PRI))
}
# DT_DIGITA
if ("DT_DIGITA" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DIGITA = as.Date(.data$DT_DIGITA))
}
# DT_INVEST
if ("DT_INVEST" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_INVEST = as.Date(.data$DT_INVEST))
}
# DT_OBITO
if ("DT_OBITO" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_OBITO = as.Date(.data$DT_OBITO))
}
# DT_ENCERRA
if ("DT_ENCERRA" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_ENCERRA = as.Date(.data$DT_ENCERRA))
}
# DT_DESLC1
if ("DT_DESLC1" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESLC1 = as.Date(.data$DT_DESLC1))
}
# DT_DESLC2
if ("DT_DESLC2" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESLC2 = as.Date(.data$DT_DESLC2))
}
# DT_DESLC3
if ("DT_DESLC3" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESLC3 = as.Date(.data$DT_DESLC3))
}
# DT_COL_DIR
if ("DT_COL_DIR" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_COL_DIR = as.Date(.data$DT_COL_DIR))
}
# DT_COL_IND
if ("DT_COL_IND" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_COL_IND = as.Date(.data$DT_COL_IND))
}
# DT_COL_S1
if ("DT_COL_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_COL_S1 = as.Date(.data$DT_COL_S1))
}
# DT_COL_S2
if ("DT_COL_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_COL_S2 = as.Date(.data$DT_COL_S2))
}
# DT_TRANSUS
if ("DT_TRANSUS" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSUS = as.Date(.data$DT_TRANSUS))
}
# DT_TRANSDM
if ("DT_TRANSDM" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSDM = as.Date(.data$DT_TRANSDM))
}
# DT_TRANSSM
if ("DT_TRANSSM" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSSM = as.Date(.data$DT_TRANSSM))
}
# DT_TRANSRM
if ("DT_TRANSRM" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSRM = as.Date(.data$DT_TRANSRM))
}
# DT_TRANSRS
if ("DT_TRANSRS" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSRS = as.Date(.data$DT_TRANSRS))
}
# DT_TRANSSE
if ("DT_TRANSSE" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSSE = as.Date(.data$DT_TRANSSE))
}
# SEM_NOT
if ("SEM_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SEM_NOT = dplyr::case_match(
.data$SEM_NOT,
"1" ~ "Semana 1",
"2" ~ "Semana 2",
"3" ~ "Semana 3",
"4" ~ "Semana 4",
"5" ~ "Semana 5",
"6" ~ "Semana 6",
"7" ~ "Semana 7",
"8" ~ "Semana 8",
"9" ~ "Semana 9",
"10" ~ "Semana 10",
"11" ~ "Semana 11",
"12" ~ "Semana 12",
"13" ~ "Semana 13",
"14" ~ "Semana 14",
"15" ~ "Semana 15",
"16" ~ "Semana 16",
"17" ~ "Semana 17",
"18" ~ "Semana 18",
"19" ~ "Semana 19",
"20" ~ "Semana 20",
"21" ~ "Semana 21",
"22" ~ "Semana 22",
"23" ~ "Semana 23",
"24" ~ "Semana 24",
"25" ~ "Semana 25",
"26" ~ "Semana 26",
"27" ~ "Semana 27",
"28" ~ "Semana 28",
"29" ~ "Semana 29",
"30" ~ "Semana 30",
"31" ~ "Semana 31",
"32" ~ "Semana 32",
"33" ~ "Semana 33",
"34" ~ "Semana 34",
"35" ~ "Semana 35",
"36" ~ "Semana 36",
"37" ~ "Semana 37",
"38" ~ "Semana 38",
"39" ~ "Semana 39",
"40" ~ "Semana 40",
"41" ~ "Semana 41",
"42" ~ "Semana 42",
"43" ~ "Semana 43",
"44" ~ "Semana 44",
"45" ~ "Semana 45",
"46" ~ "Semana 46",
"47" ~ "Semana 47",
"48" ~ "Semana 48",
"49" ~ "Semana 49",
"50" ~ "Semana 50",
"51" ~ "Semana 51",
"52" ~ "Semana 52",
"53" ~ "Semana 53",
"54" ~ "Em branco",
.default = .data$SEM_NOT
)
) %>%
dplyr::mutate(SEM_NOT = as.factor(.data$SEM_NOT))
}
# SG_UF_NOT
if ("SG_UF_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SG_UF_NOT = dplyr::case_match(
.data$SG_UF_NOT,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantins",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$SG_UF_NOT
)
) %>%
dplyr::mutate(SG_UF_NOT = as.factor(.data$SG_UF_NOT))
}
# SEM_PRI
if ("SEM_PRI" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SEM_PRI = dplyr::case_match(
.data$SEM_PRI,
"1" ~ "Semana 1",
"2" ~ "Semana 2",
"3" ~ "Semana 3",
"4" ~ "Semana 4",
"5" ~ "Semana 5",
"6" ~ "Semana 6",
"7" ~ "Semana 7",
"8" ~ "Semana 8",
"9" ~ "Semana 9",
"10" ~ "Semana 10",
"11" ~ "Semana 11",
"12" ~ "Semana 12",
"13" ~ "Semana 13",
"14" ~ "Semana 14",
"15" ~ "Semana 15",
"16" ~ "Semana 16",
"17" ~ "Semana 17",
"18" ~ "Semana 18",
"19" ~ "Semana 19",
"20" ~ "Semana 20",
"21" ~ "Semana 21",
"22" ~ "Semana 22",
"23" ~ "Semana 23",
"24" ~ "Semana 24",
"25" ~ "Semana 25",
"26" ~ "Semana 26",
"27" ~ "Semana 27",
"28" ~ "Semana 28",
"29" ~ "Semana 29",
"30" ~ "Semana 30",
"31" ~ "Semana 31",
"32" ~ "Semana 32",
"33" ~ "Semana 33",
"34" ~ "Semana 34",
"35" ~ "Semana 35",
"36" ~ "Semana 36",
"37" ~ "Semana 37",
"38" ~ "Semana 38",
"39" ~ "Semana 39",
"40" ~ "Semana 40",
"41" ~ "Semana 41",
"42" ~ "Semana 42",
"43" ~ "Semana 43",
"44" ~ "Semana 44",
"45" ~ "Semana 45",
"46" ~ "Semana 46",
"47" ~ "Semana 47",
"48" ~ "Semana 48",
"49" ~ "Semana 49",
"50" ~ "Semana 50",
"51" ~ "Semana 51",
"52" ~ "Semana 52",
"53" ~ "Semana 53",
"54" ~ "Em branco",
.default = .data$SEM_PRI
)
) %>%
dplyr::mutate(SEM_PRI = as.factor(.data$SEM_PRI))
}
# IDADE
if ("NU_IDADE_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
NU_IDADE_N = dplyr::case_match(
.data$NU_IDADE_N,
999 ~ NA,
.default = .data$NU_IDADE_N
)
) %>%
# Codigo e valor
dplyr::mutate(
idade_cod = substr(.data$NU_IDADE_N, 1, 1),
idade_value = as.numeric(substr(.data$NU_IDADE_N, 2, 3)),
) %>%
dplyr::mutate(
IDADEminutos = dplyr::case_match(
.data$idade_cod,
"0" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEhoras = dplyr::case_match(
.data$idade_cod,
"1" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEdias = dplyr::case_match(
.data$idade_cod,
"2" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEmeses = dplyr::case_match(
.data$idade_cod,
"3" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEanos = dplyr::case_match(
.data$idade_cod,
"4" ~ idade_value,
"5" ~ idade_value + 100,
.default = NA
)
) %>%
dplyr::select(-"idade_cod", -"idade_value")
} else if ("NU_IDADE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
idade_cod = substr(.data$NU_IDADE, 0, 1),
idade_value = as.numeric(substr(.data$NU_IDADE, 2, 4)),
) %>%
dplyr::mutate(
IDADEdias = dplyr::case_match(
.data$idade_cod,
"D" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEmeses = dplyr::case_match(
.data$idade_cod,
"M" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEanos = dplyr::case_match(
.data$idade_cod,
"A" ~ idade_value,
.default = NA
)
) %>%
dplyr::select(-"idade_cod", -"idade_value")
}
# CS_SEXO
if ("CS_SEXO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_SEXO = dplyr::case_match(
.data$CS_SEXO,
"M" ~ "Masculino",
"F" ~ "Feminino",
"I" ~ "Ignorado",
.default = .data$CS_SEXO
)
) %>%
dplyr::mutate(CS_SEXO = as.factor(.data$CS_SEXO))
}
# CS_GESTANT
if ("CS_GESTANT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_GESTANT = dplyr::case_match(
.data$CS_GESTANT,
"1" ~ "1o trimestre",
"2" ~ "2o trimestre",
"3" ~ "3o trimestre",
"4" ~ "Idade gestacional ignorada",
"5" ~ "N\u00e3o",
"6" ~ "N\u00e3o se aplica",
"9" ~ "Ignorado",
.default = .data$CS_GESTANT
)
) %>%
dplyr::mutate(CS_GESTANT = as.factor(.data$CS_GESTANT))
}
# CS_RACA
if ("CS_RACA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_RACA = dplyr::case_match(
.data$CS_RACA,
"1" ~ "Branca",
"2" ~ "Preta",
"3" ~ "Amarela",
"4" ~ "Parda",
"5" ~ "Ind\u00edgena",
"9" ~ "Ignorado",
.default = .data$CS_RACA
)
) %>%
dplyr::mutate(CS_RACA = as.factor(.data$CS_RACA))
}
# CS_ESCOL_N
if ("CS_ESCOL_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_ESCOL_N = dplyr::case_match(
.data$CS_ESCOL_N,
"1" ~ "1a a 4a s\u00e9rie incompleta do EF",
"2" ~ "4a s\u00e9rie completa do EF (antigo 1o grau)",
"3" ~
"5a \u00e0 8a s\u00e9rie incompleta do EF (antigo gin\u00e1sio ou 1o grau)",
"4" ~ "Ensino fundamental completo (antigo gin\u00e1sio ou 1o grau)",
"5" ~ "Ensino m\u00e9dio incompleto (antigo colegial ou 2o grau)",
"6" ~ "Ensino m\u00e9dio completo (antigo colegial ou 2o grau)",
"7" ~ "Educa\u00e7\u00e3o superior incompleta",
"8" ~ "Educa\u00e7\u00e3o superior completa",
"9" ~ "Ignorado",
"10" ~ "N\u00e3o se aplica",
.default = .data$CS_ESCOL_N
)
) %>%
dplyr::mutate(CS_ESCOL_N = as.factor(.data$CS_ESCOL_N))
}
# SG_UF
if ("SG_UF" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SG_UF = dplyr::case_match(
.data$SG_UF,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantins",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$SG_UF
)
) %>%
dplyr::mutate(SG_UF = as.factor(.data$SG_UF))
}
# ID_PAIS
if ("ID_PAIS" %in% variables_names) {
data$ID_PAIS <- dplyr::left_join(
data,
microdatasus::paisnet,
by = c("ID_PAIS" = "ID_PAIS")
)$NM_PAIS
}
# ID_OCUPA_N
if ("ID_OCUPA_N" %in% variables_names) {
data$ID_OCUPA_N <- factor(
dplyr::left_join(
data,
microdatasus::tabCBO,
by = c("ID_OCUPA_N" = "cod")
)$nome
)
}
# PRESENCA
if ("PRESENCA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
PRESENCA = dplyr::case_match(
.data$PRESENCA,
"9" ~ NA,
"1" ~ "Sim",
"2" ~ "N\\u00e3o",
"3" ~ "N\\u00e3o se aplica",
.default = .data$PRESENCA
)
) %>%
dplyr::mutate(PRESENCA = as.factor(.data$PRESENCA))
}
# HISTORIA
if ("HISTORIA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HISTORIA = dplyr::case_match(
.data$HISTORIA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$HISTORIA
)
) %>%
dplyr::mutate(HISTORIA = as.factor(.data$HISTORIA))
}
# CONTROLE
if ("CONTROLE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CONTROLE = dplyr::case_match(
.data$CONTROLE,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$CONTROLE
)
) %>%
dplyr::mutate(CONTROLE = as.factor(.data$CONTROLE))
}
# MANIPULA
if ("MANIPULA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
MANIPULA = dplyr::case_match(
.data$MANIPULA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"3" ~ "N\u00e3o se aplica",
"9" ~ NA,
.default = .data$MANIPULA
)
) %>%
dplyr::mutate(MANIPULA = as.factor(.data$MANIPULA))
}
# MAECHAGA
if ("MAECHAGA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
MAECHAGA = dplyr::case_match(
.data$MAECHAGA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"3" ~ "N\u00e3o se aplica",
"9" ~ NA,
.default = .data$MAECHAGA
)
) %>%
dplyr::mutate(MAECHAGA = as.factor(.data$MAECHAGA))
}
# ORAL
if ("ORAL" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ORAL = dplyr::case_match(
.data$ORAL,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$ORAL
)
) %>%
dplyr::mutate(ORAL = as.factor(.data$ORAL))
}
# ASSINTOMA
if ("ASSINTOMA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ASSINTOMA = dplyr::case_match(
.data$ASSINTOMA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$ASSINTOMA
)
) %>%
dplyr::mutate(ASSINTOMA = as.factor(.data$ASSINTOMA))
}
# EDEMA
if ("EDEMA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
EDEMA = dplyr::case_match(
.data$EDEMA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$EDEMA
)
) %>%
dplyr::mutate(EDEMA = as.factor(.data$EDEMA))
}
# MENINGOE
if ("MENINGOE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
MENINGOE = dplyr::case_match(
.data$MENINGOE,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$MENINGOE
)
) %>%
dplyr::mutate(MENINGOE = as.factor(.data$MENINGOE))
}
# FEBRE
if ("FEBRE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
FEBRE = dplyr::case_match(
.data$FEBRE,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$FEBRE
)
) %>%
dplyr::mutate(FEBRE = as.factor(.data$FEBRE))
}
# HEPATOME
if ("HEPATOME" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HEPATOME = dplyr::case_match(
.data$HEPATOME,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$HEPATOME
)
) %>%
dplyr::mutate(HEPATOME = as.factor(.data$HEPATOME))
}
# SINAIS_ICC
if ("SINAIS_ICC" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SINAIS_ICC = dplyr::case_match(
.data$SINAIS_ICC,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$SINAIS_ICC
)
) %>%
dplyr::mutate(SINAIS_ICC = as.factor(.data$SINAIS_ICC))
}
# ARRITMIAS
if ("ARRITMIAS" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ARRITMIAS = dplyr::case_match(
.data$ARRITMIAS,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$ARRITMIAS
)
) %>%
dplyr::mutate(ARRITMIAS = as.factor(.data$ARRITMIAS))
}
# ASTENIA
if ("ASTENIA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ASTENIA = dplyr::case_match(
.data$ASTENIA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$ASTENIA
)
) %>%
dplyr::mutate(ASTENIA = as.factor(.data$ASTENIA))
}
# ESPLENOM
if ("ESPLENOM" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ESPLENOM = dplyr::case_match(
.data$ESPLENOM,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$ESPLENOM
)
) %>%
dplyr::mutate(ESPLENOM = as.factor(.data$ESPLENOM))
}
# CHAGOMA
if ("CHAGOMA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CHAGOMA = dplyr::case_match(
.data$CHAGOMA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$CHAGOMA
)
) %>%
dplyr::mutate(CHAGOMA = as.factor(.data$CHAGOMA))
}
# EXAME
if ("EXAME" %in% variables_names) {
data <- data %>%
dplyr::mutate(
EXAME = dplyr::case_match(
.data$EXAME,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$EXAME
)
) %>%
dplyr::mutate(EXAME = as.factor(.data$EXAME))
}
# MICRO_HEMA
if ("MICRO_HEMA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
MICRO_HEMA = dplyr::case_match(
.data$MICRO_HEMA,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$MICRO_HEMA
)
) %>%
dplyr::mutate(MICRO_HEMA = as.factor(.data$MICRO_HEMA))
}
# OUTRO
if ("OUTRO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
OUTRO = dplyr::case_match(
.data$OUTRO,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$OUTRO
)
) %>%
dplyr::mutate(OUTRO = as.factor(.data$OUTRO))
}
# XENODIAG
if ("XENODIAG" %in% variables_names) {
data <- data %>%
dplyr::mutate(
XENODIAG = dplyr::case_match(
.data$XENODIAG,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$XENODIAG
)
) %>%
dplyr::mutate(XENODIAG = as.factor(.data$XENODIAG))
}
# HEMOCULT
if ("HEMOCULT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HEMOCULT = dplyr::case_match(
.data$HEMOCULT,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$HEMOCULT
)
) %>%
dplyr::mutate(HEMOCULT = as.factor(.data$HEMOCULT))
}
# ELI_IGM_S1
if ("ELI_IGM_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ELI_IGM_S1 = dplyr::case_match(
.data$ELI_IGM_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$ELI_IGM_S1
)
) %>%
dplyr::mutate(ELI_IGM_S1 = as.factor(.data$ELI_IGM_S1))
}
# ELI_IGG_S1
if ("ELI_IGG_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ELI_IGG_S1 = dplyr::case_match(
.data$ELI_IGG_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$ELI_IGG_S1
)
) %>%
dplyr::mutate(ELI_IGG_S1 = as.factor(.data$ELI_IGG_S1))
}
# ELI_IGM_S2
if ("ELI_IGM_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ELI_IGM_S2 = dplyr::case_match(
.data$ELI_IGM_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$ELI_IGM_S2
)
) %>%
dplyr::mutate(ELI_IGM_S2 = as.factor(.data$ELI_IGM_S2))
}
# ELI_IGG_S2
if ("ELI_IGG_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ELI_IGG_S2 = dplyr::case_match(
.data$ELI_IGG_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$ELI_IGG_S2
)
) %>%
dplyr::mutate(ELI_IGG_S2 = as.factor(.data$ELI_IGG_S2))
}
# HEM_IGM_S1
if ("HEM_IGM_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HEM_IGM_S1 = dplyr::case_match(
.data$HEM_IGM_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$HEM_IGM_S1
)
) %>%
dplyr::mutate(HEM_IGM_S1 = as.factor(.data$HEM_IGM_S1))
}
# HEM_IGG_S1
if ("HEM_IGG_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HEM_IGG_S1 = dplyr::case_match(
.data$HEM_IGG_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$HEM_IGM_S1
)
) %>%
dplyr::mutate(HEM_IGG_S1 = as.factor(.data$HEM_IGG_S1))
}
# HEM_IGM_S2
if ("HEM_IGM_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HEM_IGM_S2 = dplyr::case_match(
.data$HEM_IGM_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$HEM_IGM_S1
)
) %>%
dplyr::mutate(HEM_IGM_S2 = as.factor(.data$HEM_IGM_S2))
}
# HEM_IGG_S2
if ("HEM_IGG_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HEM_IGG_S2 = dplyr::case_match(
.data$HEM_IGG_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$HEM_IGM_S1
)
) %>%
dplyr::mutate(HEM_IGG_S2 = as.factor(.data$HEM_IGG_S2))
}
# IMU_IGM_S1
if ("IMU_IGM_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
IMU_IGM_S1 = dplyr::case_match(
.data$IMU_IGM_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$IMU_IGM_S1
)
) %>%
dplyr::mutate(IMU_IGM_S1 = as.factor(.data$IMU_IGM_S1))
}
# TIT_IGM_S1
if ("TIT_IGM_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TIT_IGM_S1 = dplyr::case_match(
.data$TIT_IGM_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$TIT_IGM_S1
)
) %>%
dplyr::mutate(TIT_IGM_S1 = as.factor(.data$TIT_IGM_S1))
}
# IMU_IGM_S2
if ("IMU_IGM_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
IMU_IGM_S2 = dplyr::case_match(
.data$IMU_IGM_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$IMU_IGM_S2
)
) %>%
dplyr::mutate(IMU_IGM_S2 = as.factor(.data$IMU_IGM_S2))
}
# TIT_IGM_S2
if ("TIT_IGM_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TIT_IGM_S2 = dplyr::case_match(
.data$TIT_IGM_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$TIT_IGM_S2
)
) %>%
dplyr::mutate(TIT_IGM_S2 = as.factor(.data$TIT_IGM_S2))
}
# IMU_IGG_S1
if ("IMU_IGG_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
IMU_IGG_S1 = dplyr::case_match(
.data$IMU_IGG_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$IMU_IGG_S1
)
) %>%
dplyr::mutate(IMU_IGG_S1 = as.factor(.data$IMU_IGG_S1))
}
# TIT_IGG_S1
if ("TIT_IGG_S1" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TIT_IGG_S1 = dplyr::case_match(
.data$TIT_IGG_S1,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$TIT_IGG_S1
)
) %>%
dplyr::mutate(TIT_IGG_S1 = as.factor(.data$TIT_IGG_S1))
}
# IMU_IGG_S2
if ("IMU_IGG_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
IMU_IGG_S2 = dplyr::case_match(
.data$IMU_IGG_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$IMU_IGG_S2
)
) %>%
dplyr::mutate(IMU_IGG_S2 = as.factor(.data$IMU_IGG_S2))
}
# TIT_IGG_S2
if ("TIT_IGG_S2" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TIT_IGG_S2 = dplyr::case_match(
.data$TIT_IGG_S2,
"1" ~ "Reagente",
"2" ~ "N\u00e3o reagente",
"3" ~ "Inconclusivo",
"4" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$TIT_IGG_S2
)
) %>%
dplyr::mutate(TIT_IGG_S2 = as.factor(.data$TIT_IGG_S2))
}
# RES_HIST
if ("RES_HIST" %in% variables_names) {
data <- data %>%
dplyr::mutate(
RES_HIST = dplyr::case_match(
.data$RES_HIST,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\u00e3o realizado",
"9" ~ NA,
.default = .data$RES_HIST
)
) %>%
dplyr::mutate(RES_HIST = as.factor(.data$RES_HIST))
}
# ESPECIFICO
if ("ESPECIFICO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ESPECIFICO = dplyr::case_match(
.data$ESPECIFICO,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$ESPECIFICO
)
) %>%
dplyr::mutate(ESPECIFICO = as.factor(.data$ESPECIFICO))
}
# SINTOMATIC
if ("SINTOMATIC" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SINTOMATIC = dplyr::case_match(
.data$SINTOMATIC,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$SINTOMATIC
)
) %>%
dplyr::mutate(SINTOMATIC = as.factor(.data$SINTOMATIC))
}
# DROGA
if ("DROGA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
DROGA = dplyr::case_match(
.data$DROGA,
"1" ~ "Benznidazol",
"2" ~ "Outro",
"9" ~ NA,
.default = .data$DROGA
)
) %>%
dplyr::mutate(DROGA = as.factor(.data$DROGA))
}
# CON_TRIAT
if ("CON_TRIAT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CON_TRIAT = dplyr::case_match(
.data$CON_TRIAT,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"3" ~ "N\u00e3o se aplica",
"9" ~ NA,
.default = .data$CON_TRIAT
)
) %>%
dplyr::mutate(CON_TRIAT = as.factor(.data$CON_TRIAT))
}
# BIOSSEG
if ("BIOSSEG" %in% variables_names) {
data <- data %>%
dplyr::mutate(
BIOSSEG = dplyr::case_match(
.data$BIOSSEG,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"3" ~ "N\u00e3o se aplica",
"9" ~ NA,
.default = .data$BIOSSEG
)
) %>%
dplyr::mutate(BIOSSEG = as.factor(.data$BIOSSEG))
}
# FISCALIZA
if ("FISCALIZA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
FISCALIZA = dplyr::case_match(
.data$FISCALIZA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"3" ~ "N\u00e3o se aplica",
"9" ~ NA,
.default = .data$FISCALIZA
)
) %>%
dplyr::mutate(FISCALIZA = as.factor(.data$FISCALIZA))
}
# MED_OUTRO
if ("MED_OUTRO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
MED_OUTRO = dplyr::case_match(
.data$MED_OUTRO,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"3" ~ "N\u00e3o se aplica",
"9" ~ NA,
.default = .data$MED_OUTRO
)
) %>%
dplyr::mutate(MED_OUTRO = as.factor(.data$MED_OUTRO))
}
# CLASSI_FIN
if ("CLASSI_FIN" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLASSI_FIN = dplyr::case_match(
.data$CLASSI_FIN,
"9" ~ NA,
"1" ~ "Confirmado",
"2" ~ "Descartado",
"8" ~ "Inconclusivo",
.default = .data$CLASSI_FIN
)
) %>%
dplyr::mutate(CLASSI_FIN = as.factor(.data$CLASSI_FIN))
}
# CRITERIO
if ("CRITERIO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CRITERIO = dplyr::case_match(
.data$CRITERIO,
"9" ~ NA,
"1" ~ "Laboratorial",
"2" ~ "Cl\\u00ednico-epidemiol\\u00f3gico",
.default = .data$CRITERIO
)
) %>%
dplyr::mutate(CRITERIO = as.factor(.data$CRITERIO))
}
# CON_PROVAV
if ("CON_PROVAV" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CON_PROVAV = dplyr::case_match(
.data$CON_PROVAV,
"9" ~ NA,
"1" ~ "Transfusional",
"2" ~ "Vetorial",
"3" ~ "Vertical",
"4" ~ "Acidental",
"5" ~ "Oral",
"6" ~ "Outro",
.default = .data$CON_PROVAV
)
) %>%
dplyr::mutate(CON_PROVAV = as.factor(.data$CON_PROVAV))
}
# CON_LOCAL
if ("CON_LOCAL" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CON_LOCAL = dplyr::case_match(
.data$CON_LOCAL,
"9" ~ NA,
"1" ~ "Unidade de Hemoterapia",
"2" ~ "Domic\\u00edlio",
"3" ~ "Laborat\\u00f3rio",
"4" ~ "Outro",
.default = .data$CON_LOCAL
)
) %>%
dplyr::mutate(CON_LOCAL = as.factor(.data$CON_LOCAL))
}
# TPAUTOCTO
if ("TPAUTOCTO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TPAUTOCTO = dplyr::case_match(
.data$TPAUTOCTO,
"9" ~ NA,
"1" ~ "Sim",
"2" ~ "N\\u00e3o",
"3" ~ "Indeterminado",
.default = .data$TPAUTOCTO
)
) %>%
dplyr::mutate(TPAUTOCTO = as.factor(.data$TPAUTOCTO))
}
# COUFINF
if ("COUFINF" %in% variables_names) {
data <- data %>%
dplyr::mutate(
COUFINF = dplyr::case_match(
.data$COUFINF,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantis",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$COUFINF
)
) %>%
dplyr::mutate(COUFINF = as.factor(.data$COUFINF))
}
# COPAISINF
if ("COPAISINF" %in% variables_names) {
data$COPAISINF <- dplyr::left_join(
data,
microdatasus::paisnet,
by = c("COPAISINF" = "COPAISINF")
)$NM_PAIS
}
# DOENCA_TRA
if ("DOENCA_TRA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
DOENCA_TRA = dplyr::case_match(
.data$DOENCA_TRA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$DOENCA_TRA
)
) %>%
dplyr::mutate(DOENCA_TRA = as.factor(.data$DOENCA_TRA))
}
# EVOLUCAO
if ("EVOLUCAO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
EVOLUCAO = dplyr::case_match(
.data$EVOLUCAO,
"9" ~ NA,
"1" ~ "Vivo",
"2" ~ "\\u00d3bito pelo agravo notificado",
"3" ~ "\\u00d3bito por outra causa",
.default = .data$EVOLUCAO
)
) %>%
dplyr::mutate(EVOLUCAO = as.factor(.data$EVOLUCAO))
}
# From data.table to tibble
data <- tibble::as_tibble(data)
# Purge levels
data <- droplevels(data)
# Unescape unicode characters
data <- suppressWarnings(tibble::as_tibble(lapply(
X = data,
FUN = stringi::stri_unescape_unicode
)))
# Return
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.