#' Process SINAN Leishmaniose Tegumentar variables from DataSUS
#'
#' \code{process_sinan_leishmaniose_tegumentar} processes SINAN Leishmaniose Tegumentar variables retrieved by \code{fetch_datasus()}.
#'
#' This function processes SINAN Leishmaniose Tegumentar variables retrieved by \code{fetch_datasus()}, informing labels for categoric variables including NA values.
#'
#' @param data \code{data.frame} created by \code{fetch_datasus()}.
#' @param municipality_data optional logical. \code{TRUE} by default, creates new variables in the dataset informing the full name and other details about the municipality of residence.
#'
#' @examples
#' process_sinan_leishmaniose_tegumentar(sinan_leishmaniose_tegumentar_sample)
#'
#' @return a \code{data.frame} with the processed data.
#'
#' @export
process_sinan_leishmaniose_tegumentar <- function(
data,
municipality_data = TRUE
) {
# Variables names
variables_names <- names(data)
# Use dtplyr
data <- dtplyr::lazy_dt(data)
# TP_NOT
if ("TP_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TP_NOT = dplyr::case_match(
.data$TP_NOT,
"1" ~ "Negativa",
"2" ~ "Individual",
"3" ~ "Surto",
"4" ~ "Agregado",
.default = .data$TP_NOT
)
) %>%
dplyr::mutate(TP_NOT = as.factor(.data$TP_NOT))
}
# DT_NOTIFIC
if ("DT_NOTIFIC" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_NOTIFIC = as.Date(.data$DT_NOTIFIC))
}
# DT_SIN_PRI
if ("DT_SIN_PRI" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_SIN_PRI = as.Date(.data$DT_SIN_PRI))
}
# DT_DIGITA
if ("DT_DIGITA" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DIGITA = as.Date(.data$DT_DIGITA))
}
# DT_TRANSUS
if ("DT_TRANSUS" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSUS = as.Date(.data$DT_TRANSUS))
}
# DT_TRANSDM
if ("DT_TRANSDM" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSDM = as.Date(.data$DT_TRANSDM))
}
# DT_TRANSSM
if ("DT_TRANSSM" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSSM = as.Date(.data$DT_TRANSSM))
}
# DT_TRANSRM
if ("DT_TRANSRM" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSRM = as.Date(.data$DT_TRANSRM))
}
# DT_TRANSRS
if ("DT_TRANSRS" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSRS = as.Date(.data$DT_TRANSRS))
}
# DT_TRANSSE
if ("DT_TRANSSE" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_TRANSSE = as.Date(.data$DT_TRANSSE))
}
# DT_INVEST
if ("DT_INVEST" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_INVEST = as.Date(.data$DT_INVEST))
}
# DT_INIC_TR
if ("DT_INIC_TR" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_INIC_TR = as.Date(.data$DT_INIC_TR))
}
# DT_OBITO
if ("DT_OBITO" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_OBITO = as.Date(.data$DT_OBITO))
}
# DT_ENCERRA
if ("DT_ENCERRA" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_ENCERRA = as.Date(.data$DT_ENCERRA))
}
# DT_DESC1
if ("DT_DESC1" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESC1 = as.Date(.data$DT_DESC1))
}
# DT_DESC2
if ("DT_DESC2" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESC2 = as.Date(.data$DT_DESC2))
}
# DT_DESC3
if ("DT_DESC3" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESC3 = as.Date(.data$DT_DESC3))
}
# SEM_NOT
if ("SEM_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SEM_NOT = dplyr::case_match(
.data$SEM_NOT,
"1" ~ "Semana 1",
"2" ~ "Semana 2",
"3" ~ "Semana 3",
"4" ~ "Semana 4",
"5" ~ "Semana 5",
"6" ~ "Semana 6",
"7" ~ "Semana 7",
"8" ~ "Semana 8",
"9" ~ "Semana 9",
"10" ~ "Semana 10",
"11" ~ "Semana 11",
"12" ~ "Semana 12",
"13" ~ "Semana 13",
"14" ~ "Semana 14",
"15" ~ "Semana 15",
"16" ~ "Semana 16",
"17" ~ "Semana 17",
"18" ~ "Semana 18",
"19" ~ "Semana 19",
"20" ~ "Semana 20",
"21" ~ "Semana 21",
"22" ~ "Semana 22",
"23" ~ "Semana 23",
"24" ~ "Semana 24",
"25" ~ "Semana 25",
"26" ~ "Semana 26",
"27" ~ "Semana 27",
"28" ~ "Semana 28",
"29" ~ "Semana 29",
"30" ~ "Semana 30",
"31" ~ "Semana 31",
"32" ~ "Semana 32",
"33" ~ "Semana 33",
"34" ~ "Semana 34",
"35" ~ "Semana 35",
"36" ~ "Semana 36",
"37" ~ "Semana 37",
"38" ~ "Semana 38",
"39" ~ "Semana 39",
"40" ~ "Semana 40",
"41" ~ "Semana 41",
"42" ~ "Semana 42",
"43" ~ "Semana 43",
"44" ~ "Semana 44",
"45" ~ "Semana 45",
"46" ~ "Semana 46",
"47" ~ "Semana 47",
"48" ~ "Semana 48",
"49" ~ "Semana 49",
"50" ~ "Semana 50",
"51" ~ "Semana 51",
"52" ~ "Semana 52",
"53" ~ "Semana 53",
"54" ~ "Em branco",
.default = .data$SEM_NOT
)
) %>%
dplyr::mutate(SEM_NOT = as.factor(.data$SEM_NOT))
}
# SG_UF_NOT
if ("SG_UF_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SG_UF_NOT = dplyr::case_match(
.data$SG_UF_NOT,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantins",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$SG_UF_NOT
)
) %>%
dplyr::mutate(SG_UF_NOT = as.factor(.data$SG_UF_NOT))
}
# SEM_PRI
if ("SEM_PRI" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SEM_PRI = dplyr::case_match(
.data$SEM_PRI,
"1" ~ "Semana 1",
"2" ~ "Semana 2",
"3" ~ "Semana 3",
"4" ~ "Semana 4",
"5" ~ "Semana 5",
"6" ~ "Semana 6",
"7" ~ "Semana 7",
"8" ~ "Semana 8",
"9" ~ "Semana 9",
"10" ~ "Semana 10",
"11" ~ "Semana 11",
"12" ~ "Semana 12",
"13" ~ "Semana 13",
"14" ~ "Semana 14",
"15" ~ "Semana 15",
"16" ~ "Semana 16",
"17" ~ "Semana 17",
"18" ~ "Semana 18",
"19" ~ "Semana 19",
"20" ~ "Semana 20",
"21" ~ "Semana 21",
"22" ~ "Semana 22",
"23" ~ "Semana 23",
"24" ~ "Semana 24",
"25" ~ "Semana 25",
"26" ~ "Semana 26",
"27" ~ "Semana 27",
"28" ~ "Semana 28",
"29" ~ "Semana 29",
"30" ~ "Semana 30",
"31" ~ "Semana 31",
"32" ~ "Semana 32",
"33" ~ "Semana 33",
"34" ~ "Semana 34",
"35" ~ "Semana 35",
"36" ~ "Semana 36",
"37" ~ "Semana 37",
"38" ~ "Semana 38",
"39" ~ "Semana 39",
"40" ~ "Semana 40",
"41" ~ "Semana 41",
"42" ~ "Semana 42",
"43" ~ "Semana 43",
"44" ~ "Semana 44",
"45" ~ "Semana 45",
"46" ~ "Semana 46",
"47" ~ "Semana 47",
"48" ~ "Semana 48",
"49" ~ "Semana 49",
"50" ~ "Semana 50",
"51" ~ "Semana 51",
"52" ~ "Semana 52",
"53" ~ "Semana 53",
"54" ~ "Em branco",
.default = .data$SEM_PRI
)
) %>%
dplyr::mutate(SEM_PRI = as.factor(.data$SEM_PRI))
}
# IDADE
if ("NU_IDADE_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
NU_IDADE_N = dplyr::case_match(
.data$NU_IDADE_N,
999 ~ NA,
.default = .data$NU_IDADE_N
)
) %>%
# Codigo e valor
dplyr::mutate(
idade_cod = substr(.data$NU_IDADE_N, 1, 1),
idade_value = as.numeric(substr(.data$NU_IDADE_N, 2, 3)),
) %>%
dplyr::mutate(
IDADEminutos = dplyr::case_match(
.data$idade_cod,
"0" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEhoras = dplyr::case_match(
.data$idade_cod,
"1" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEdias = dplyr::case_match(
.data$idade_cod,
"2" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEmeses = dplyr::case_match(
.data$idade_cod,
"3" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEanos = dplyr::case_match(
.data$idade_cod,
"4" ~ idade_value,
"5" ~ idade_value + 100,
.default = NA
)
) %>%
dplyr::select(-"idade_cod", -"idade_value")
} else if ("NU_IDADE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
idade_cod = substr(.data$NU_IDADE, 0, 1),
idade_value = as.numeric(substr(.data$NU_IDADE, 2, 4)),
) %>%
dplyr::mutate(
IDADEdias = dplyr::case_match(
.data$idade_cod,
"D" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEmeses = dplyr::case_match(
.data$idade_cod,
"M" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEanos = dplyr::case_match(
.data$idade_cod,
"A" ~ idade_value,
.default = NA
)
) %>%
dplyr::select(-"idade_cod", -"idade_value")
}
# CS_SEXO
if ("CS_SEXO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_SEXO = dplyr::case_match(
.data$CS_SEXO,
"M" ~ "Masculino",
"F" ~ "Feminino",
"I" ~ "Ignorado",
.default = .data$CS_SEXO
)
) %>%
dplyr::mutate(CS_SEXO = as.factor(.data$CS_SEXO))
}
# CS_GESTANT
if ("CS_GESTANT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_GESTANT = dplyr::case_match(
.data$CS_GESTANT,
"1" ~ "1o trimestre",
"2" ~ "2o trimestre",
"3" ~ "3o trimestre",
"4" ~ "Idade gestacional ignorada",
"5" ~ "N\u00e3o",
"6" ~ "N\u00e3o se aplica",
"9" ~ "Ignorado",
.default = .data$CS_GESTANT
)
) %>%
dplyr::mutate(CS_GESTANT = as.factor(.data$CS_GESTANT))
}
# CS_RACA
if ("CS_RACA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_RACA = dplyr::case_match(
.data$CS_RACA,
"1" ~ "Branca",
"2" ~ "Preta",
"3" ~ "Amarela",
"4" ~ "Parda",
"5" ~ "Ind\u00edgena",
"9" ~ "Ignorado",
.default = .data$CS_RACA
)
) %>%
dplyr::mutate(CS_RACA = as.factor(.data$CS_RACA))
}
# CS_ESCOL_N
if ("CS_ESCOL_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_ESCOL_N = dplyr::case_match(
.data$CS_ESCOL_N,
"1" ~ "1a a 4a s\u00e9rie incompleta do EF",
"2" ~ "4a s\u00e9rie completa do EF (antigo 1o grau)",
"3" ~
"5a \u00e0 8a s\u00e9rie incompleta do EF (antigo gin\u00e1sio ou 1o grau)",
"4" ~ "Ensino fundamental completo (antigo gin\u00e1sio ou 1o grau)",
"5" ~ "Ensino m\u00e9dio incompleto (antigo colegial ou 2o grau)",
"6" ~ "Ensino m\u00e9dio completo (antigo colegial ou 2o grau)",
"7" ~ "Educa\u00e7\u00e3o superior incompleta",
"8" ~ "Educa\u00e7\u00e3o superior completa",
"9" ~ "Ignorado",
"10" ~ "N\u00e3o se aplica",
.default = .data$CS_ESCOL_N
)
) %>%
dplyr::mutate(CS_ESCOL_N = as.factor(.data$CS_ESCOL_N))
}
# SG_UF
if ("SG_UF" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SG_UF = dplyr::case_match(
.data$SG_UF,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantins",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$SG_UF
)
) %>%
dplyr::mutate(SG_UF = as.factor(.data$SG_UF))
}
# ID_PAIS
if ("ID_PAIS" %in% variables_names) {
data$ID_PAIS <- dplyr::left_join(
data,
microdatasus::paisnet,
by = c("ID_PAIS" = "ID_PAIS")
)$NM_PAIS
}
# ID_OCUPA_N
if ("ID_OCUPA_N" %in% variables_names) {
data$ID_OCUPA_N <- factor(
dplyr::left_join(
data,
microdatasus::tabCBO,
by = c("ID_OCUPA_N" = "cod")
)$nome
)
}
# CLI_CUTANE
if ("CLI_CUTANE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLI_CUTANE = dplyr::case_match(
.data$CLI_CUTANE,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$CLI_CUTANE
)
) %>%
dplyr::mutate(CLI_CUTANE = as.factor(.data$CLI_CUTANE))
}
# CLI_MUCOSA
if ("CLI_MUCOSA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLI_MUCOSA = dplyr::case_match(
.data$CLI_MUCOSA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$CLI_MUCOSA
)
) %>%
dplyr::mutate(CLI_MUCOSA = as.factor(.data$CLI_MUCOSA))
}
# CLI_CICATR
if ("CLI_CICATR" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLI_CICATR = dplyr::case_match(
.data$CLI_CICATR,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$CLI_CICATR
)
) %>%
dplyr::mutate(CLI_CICATR = as.factor(.data$CLI_CICATR))
}
# CLI_CO_HIV
if ("CLI_CO_HIV" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLI_CO_HIV = dplyr::case_match(
.data$CLI_CO_HIV,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$CLI_CO_HIV
)
) %>%
dplyr::mutate(CLI_CO_HIV = as.factor(.data$CLI_CO_HIV))
}
# LAB_PARASI
if ("LAB_PARASI" %in% variables_names) {
data <- data %>%
dplyr::mutate(
LAB_PARASI = dplyr::case_match(
.data$LAB_PARASI,
"1" ~ "Positivo",
"2" ~ "Negativo",
"9" ~ NA,
.default = .data$LAB_PARASI
)
) %>%
dplyr::mutate(LAB_PARASI = as.factor(.data$LAB_PARASI))
}
# LAB_IRM
if ("LAB_IRM" %in% variables_names) {
data <- data %>%
dplyr::mutate(
LAB_IRM = dplyr::case_match(
.data$LAB_IRM,
"1" ~ "Positivo",
"2" ~ "Negativo",
"9" ~ NA,
.default = .data$LAB_IRM
)
) %>%
dplyr::mutate(LAB_IRM = as.factor(.data$LAB_IRM))
}
# LAB_HISTOP
if ("LAB_HISTOP" %in% variables_names) {
data <- data %>%
dplyr::mutate(
LAB_HISTOP = dplyr::case_match(
.data$LAB_HISTOP,
"1" ~ "Encontro do parasita",
"2" ~ "Compat\\u00edvel",
"3" ~ "N\\u00e3o Compat\\u00edvel",
"4" ~ "N\\u00e3o realizado",
"9" ~ NA,
.default = .data$LAB_HISTOP
)
) %>%
dplyr::mutate(LAB_HISTOP = as.factor(.data$LAB_HISTOP))
}
# CLA_TIPO_N
if ("CLA_TIPO_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLA_TIPO_N = dplyr::case_match(
.data$CLA_TIPO_N,
"1" ~ "Caso novo",
"2" ~ "Recidiva",
"3" ~ "Transfer\\u00eancia",
"9" ~ NA,
.default = .data$CLA_TIPO_N
)
) %>%
dplyr::mutate(CLA_TIPO_N = as.factor(.data$CLA_TIPO_N))
}
# CLAS_FORMA
if ("CLAS_FORMA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLAS_FORMA = dplyr::case_match(
.data$CLAS_FORMA,
"1" ~ "Cut\\u00e2nea",
"2" ~ "Mucosa",
"9" ~ NA,
.default = .data$CLAS_FORMA
)
) %>%
dplyr::mutate(CLAS_FORMA = as.factor(.data$CLAS_FORMA))
}
# TRA_DROGA_
if ("TRA_DROGA_" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TRA_DROGA_ = dplyr::case_match(
.data$TRA_DROGA_,
"1" ~ "Antimonial Pentavalente",
"2" ~ "Anfotericina b",
"3" ~ "Pentamidina",
"4" ~ "Outras",
"5" ~ "N\\u00e3o Utilizada",
"9" ~ NA,
.default = .data$TRA_DROGA_
)
) %>%
dplyr::mutate(TRA_DROGA_ = as.factor(.data$TRA_DROGA_))
}
# TRA_OUTR_N
if ("TRA_OUTR_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TRA_OUTR_N = dplyr::case_match(
.data$TRA_OUTR_N,
"1" ~ "Antimonial Pentavalente",
"2" ~ "Anfotericina b",
"3" ~ "Pentamidina",
"4" ~ "Outras",
"5" ~ "N\\u00e3o se aplica",
"9" ~ NA,
.default = .data$TRA_OUTR_N
)
) %>%
dplyr::mutate(TRA_OUTR_N = as.factor(.data$TRA_OUTR_N))
}
# CRITERIO
if ("CRITERIO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CRITERIO = dplyr::case_match(
.data$CRITERIO,
"9" ~ NA,
"1" ~ "Laboratorial",
"2" ~ "Cl\\u00ednico-epidemiol\\u00f3gico",
.default = .data$CRITERIO
)
) %>%
dplyr::mutate(CRITERIO = as.factor(.data$CRITERIO))
}
# CON_CLASS_
if ("CON_CLASS_" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CON_CLASS_ = dplyr::case_match(
.data$CON_CLASS_,
"1" ~ "Aut\\u00f3ctone",
"2" ~ "Importado",
"3" ~ "Indeterminado",
.default = .data$CON_CLASS_
)
) %>%
dplyr::mutate(CON_CLASS_ = as.factor(.data$CON_CLASS_))
}
# TPAUTOCTO
if ("TPAUTOCTO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TPAUTOCTO = dplyr::case_match(
.data$TPAUTOCTO,
"9" ~ NA,
"1" ~ "Sim",
"2" ~ "N\\u00e3o",
"3" ~ "Indeterminado",
.default = .data$TPAUTOCTO
)
) %>%
dplyr::mutate(TPAUTOCTO = as.factor(.data$TPAUTOCTO))
}
# COUFINF
if ("COUFINF" %in% variables_names) {
data <- data %>%
dplyr::mutate(
COUFINF = dplyr::case_match(
.data$COUFINF,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantis",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$COUFINF
)
) %>%
dplyr::mutate(COUFINF = as.factor(.data$COUFINF))
}
# COPAISINF
if ("COPAISINF" %in% variables_names) {
data$COPAISINF <- dplyr::left_join(
data,
microdatasus::paisnet,
by = c("COPAISINF" = "COPAISINF")
)$NM_PAIS
}
# DOENCA_TRA
if ("DOENCA_TRA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
DOENCA_TRA = dplyr::case_match(
.data$DOENCA_TRA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$DOENCA_TRA
)
) %>%
dplyr::mutate(DOENCA_TRA = as.factor(.data$DOENCA_TRA))
}
# EVOLUCAO
if ("EVOLUCAO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
EVOLUCAO = dplyr::case_match(
.data$EVOLUCAO,
"9" ~ NA,
"1" ~ "Cura",
"2" ~ "Abandono",
"3" ~ "\\u00d3bito por LV",
"4" ~ "\\u00d3bito por outra causa",
"5" ~ "Transfer\\u00eancia",
.default = .data$EVOLUCAO
)
) %>%
dplyr::mutate(EVOLUCAO = as.factor(.data$EVOLUCAO))
}
# From data.table to tibble
data <- tibble::as_tibble(data)
# Purge levels
data <- droplevels(data)
# Unescape unicode characters
data <- suppressWarnings(tibble::as_tibble(lapply(
X = data,
FUN = stringi::stri_unescape_unicode
)))
# Return
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.