#' Process SINAN Leishmaniose Visceral variables from DataSUS
#'
#' \code{process_sinan_leishmaniose_visceral} processes SINAN Leishmaniose Visceral variables retrieved by \code{fetch_datasus()}.
#'
#' This function processes SINAN Leishmaniose Visceral variables retrieved by \code{fetch_datasus()}, informing labels for categoric variables including NA values.
#'
#' @param data \code{data.frame} created by \code{fetch_datasus()}.
#' @param municipality_data optional logical. \code{TRUE} by default, creates new variables in the dataset informing the full name and other details about the municipality of residence.
#'
#' @examples
#' process_sinan_leishmaniose_visceral(sinan_leishmaniose_visceral_sample)
#'
#' @return a \code{data.frame} with the processed data.
#'
#' @export
process_sinan_leishmaniose_visceral <- function(
data,
municipality_data = TRUE
) {
# Variables names
variables_names <- names(data)
# Use dtplyr
data <- dtplyr::lazy_dt(data)
# TP_NOT
if ("TP_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TP_NOT = dplyr::case_match(
.data$TP_NOT,
"1" ~ "Negativa",
"2" ~ "Individual",
"3" ~ "Surto",
"4" ~ "Agregado",
.default = .data$TP_NOT
)
) %>%
dplyr::mutate(TP_NOT = as.factor(.data$TP_NOT))
}
# DT_NOTIFIC
if ("DT_NOTIFIC" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_NOTIFIC = as.Date(.data$DT_NOTIFIC))
}
# DT_SIN_PRI
if ("DT_SIN_PRI" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_SIN_PRI = as.Date(.data$DT_SIN_PRI))
}
# DT_DIGITA
if ("DT_DIGITA" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DIGITA = as.Date(.data$DT_DIGITA))
}
# DT_INVEST
if ("DT_INVEST" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_INVEST = as.Date(.data$DT_INVEST))
}
# DT_OBITO
if ("DT_OBITO" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_OBITO = as.Date(.data$DT_OBITO))
}
# DT_ENCERRA
if ("DT_ENCERRA" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_ENCERRA = as.Date(.data$DT_ENCERRA))
}
# DT_DESLC1
if ("DT_DESLC1" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESLC1 = as.Date(.data$DT_DESLC1))
}
# DT_DESLC2
if ("DT_DESLC2" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESLC2 = as.Date(.data$DT_DESLC2))
}
# DT_DESLC3
if ("DT_DESLC3" %in% variables_names) {
data <- data %>%
dplyr::mutate(DT_DESLC3 = as.Date(.data$DT_DESLC3))
}
# SEM_NOT
if ("SEM_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SEM_NOT = dplyr::case_match(
.data$SEM_NOT,
"1" ~ "Semana 1",
"2" ~ "Semana 2",
"3" ~ "Semana 3",
"4" ~ "Semana 4",
"5" ~ "Semana 5",
"6" ~ "Semana 6",
"7" ~ "Semana 7",
"8" ~ "Semana 8",
"9" ~ "Semana 9",
"10" ~ "Semana 10",
"11" ~ "Semana 11",
"12" ~ "Semana 12",
"13" ~ "Semana 13",
"14" ~ "Semana 14",
"15" ~ "Semana 15",
"16" ~ "Semana 16",
"17" ~ "Semana 17",
"18" ~ "Semana 18",
"19" ~ "Semana 19",
"20" ~ "Semana 20",
"21" ~ "Semana 21",
"22" ~ "Semana 22",
"23" ~ "Semana 23",
"24" ~ "Semana 24",
"25" ~ "Semana 25",
"26" ~ "Semana 26",
"27" ~ "Semana 27",
"28" ~ "Semana 28",
"29" ~ "Semana 29",
"30" ~ "Semana 30",
"31" ~ "Semana 31",
"32" ~ "Semana 32",
"33" ~ "Semana 33",
"34" ~ "Semana 34",
"35" ~ "Semana 35",
"36" ~ "Semana 36",
"37" ~ "Semana 37",
"38" ~ "Semana 38",
"39" ~ "Semana 39",
"40" ~ "Semana 40",
"41" ~ "Semana 41",
"42" ~ "Semana 42",
"43" ~ "Semana 43",
"44" ~ "Semana 44",
"45" ~ "Semana 45",
"46" ~ "Semana 46",
"47" ~ "Semana 47",
"48" ~ "Semana 48",
"49" ~ "Semana 49",
"50" ~ "Semana 50",
"51" ~ "Semana 51",
"52" ~ "Semana 52",
"53" ~ "Semana 53",
"54" ~ "Em branco",
.default = .data$SEM_NOT
)
) %>%
dplyr::mutate(SEM_NOT = as.factor(.data$SEM_NOT))
}
# SG_UF_NOT
if ("SG_UF_NOT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SG_UF_NOT = dplyr::case_match(
.data$SG_UF_NOT,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantins",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$SG_UF_NOT
)
) %>%
dplyr::mutate(SG_UF_NOT = as.factor(.data$SG_UF_NOT))
}
# SEM_PRI
if ("SEM_PRI" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SEM_PRI = dplyr::case_match(
.data$SEM_PRI,
"1" ~ "Semana 1",
"2" ~ "Semana 2",
"3" ~ "Semana 3",
"4" ~ "Semana 4",
"5" ~ "Semana 5",
"6" ~ "Semana 6",
"7" ~ "Semana 7",
"8" ~ "Semana 8",
"9" ~ "Semana 9",
"10" ~ "Semana 10",
"11" ~ "Semana 11",
"12" ~ "Semana 12",
"13" ~ "Semana 13",
"14" ~ "Semana 14",
"15" ~ "Semana 15",
"16" ~ "Semana 16",
"17" ~ "Semana 17",
"18" ~ "Semana 18",
"19" ~ "Semana 19",
"20" ~ "Semana 20",
"21" ~ "Semana 21",
"22" ~ "Semana 22",
"23" ~ "Semana 23",
"24" ~ "Semana 24",
"25" ~ "Semana 25",
"26" ~ "Semana 26",
"27" ~ "Semana 27",
"28" ~ "Semana 28",
"29" ~ "Semana 29",
"30" ~ "Semana 30",
"31" ~ "Semana 31",
"32" ~ "Semana 32",
"33" ~ "Semana 33",
"34" ~ "Semana 34",
"35" ~ "Semana 35",
"36" ~ "Semana 36",
"37" ~ "Semana 37",
"38" ~ "Semana 38",
"39" ~ "Semana 39",
"40" ~ "Semana 40",
"41" ~ "Semana 41",
"42" ~ "Semana 42",
"43" ~ "Semana 43",
"44" ~ "Semana 44",
"45" ~ "Semana 45",
"46" ~ "Semana 46",
"47" ~ "Semana 47",
"48" ~ "Semana 48",
"49" ~ "Semana 49",
"50" ~ "Semana 50",
"51" ~ "Semana 51",
"52" ~ "Semana 52",
"53" ~ "Semana 53",
"54" ~ "Em branco",
.default = .data$SEM_PRI
)
) %>%
dplyr::mutate(SEM_PRI = as.factor(.data$SEM_PRI))
}
# IDADE
if ("NU_IDADE_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
NU_IDADE_N = dplyr::case_match(
.data$NU_IDADE_N,
999 ~ NA,
.default = .data$NU_IDADE_N
)
) %>%
# Codigo e valor
dplyr::mutate(
idade_cod = substr(.data$NU_IDADE_N, 1, 1),
idade_value = as.numeric(substr(.data$NU_IDADE_N, 2, 3)),
) %>%
dplyr::mutate(
IDADEminutos = dplyr::case_match(
.data$idade_cod,
"0" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEhoras = dplyr::case_match(
.data$idade_cod,
"1" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEdias = dplyr::case_match(
.data$idade_cod,
"2" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEmeses = dplyr::case_match(
.data$idade_cod,
"3" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEanos = dplyr::case_match(
.data$idade_cod,
"4" ~ idade_value,
"5" ~ idade_value + 100,
.default = NA
)
) %>%
dplyr::select(-"idade_cod", -"idade_value")
} else if ("NU_IDADE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
idade_cod = substr(.data$NU_IDADE, 0, 1),
idade_value = as.numeric(substr(.data$NU_IDADE, 2, 4)),
) %>%
dplyr::mutate(
IDADEdias = dplyr::case_match(
.data$idade_cod,
"D" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEmeses = dplyr::case_match(
.data$idade_cod,
"M" ~ idade_value,
.default = NA
)
) %>%
dplyr::mutate(
IDADEanos = dplyr::case_match(
.data$idade_cod,
"A" ~ idade_value,
.default = NA
)
) %>%
dplyr::select(-"idade_cod", -"idade_value")
}
# CS_SEXO
if ("CS_SEXO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_SEXO = dplyr::case_match(
.data$CS_SEXO,
"M" ~ "Masculino",
"F" ~ "Feminino",
"I" ~ "Ignorado",
.default = .data$CS_SEXO
)
) %>%
dplyr::mutate(CS_SEXO = as.factor(.data$CS_SEXO))
}
# CS_GESTANT
if ("CS_GESTANT" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_GESTANT = dplyr::case_match(
.data$CS_GESTANT,
"1" ~ "1o trimestre",
"2" ~ "2o trimestre",
"3" ~ "3o trimestre",
"4" ~ "Idade gestacional ignorada",
"5" ~ "N\u00e3o",
"6" ~ "N\u00e3o se aplica",
"9" ~ "Ignorado",
.default = .data$CS_GESTANT
)
) %>%
dplyr::mutate(CS_GESTANT = as.factor(.data$CS_GESTANT))
}
# CS_RACA
if ("CS_RACA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_RACA = dplyr::case_match(
.data$CS_RACA,
"1" ~ "Branca",
"2" ~ "Preta",
"3" ~ "Amarela",
"4" ~ "Parda",
"5" ~ "Ind\u00edgena",
"9" ~ "Ignorado",
.default = .data$CS_RACA
)
) %>%
dplyr::mutate(CS_RACA = as.factor(.data$CS_RACA))
}
# CS_ESCOL_N
if ("CS_ESCOL_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CS_ESCOL_N = dplyr::case_match(
.data$CS_ESCOL_N,
"1" ~ "1a a 4a s\u00e9rie incompleta do EF",
"2" ~ "4a s\u00e9rie completa do EF (antigo 1o grau)",
"3" ~
"5a \u00e0 8a s\u00e9rie incompleta do EF (antigo gin\u00e1sio ou 1o grau)",
"4" ~ "Ensino fundamental completo (antigo gin\u00e1sio ou 1o grau)",
"5" ~ "Ensino m\u00e9dio incompleto (antigo colegial ou 2o grau)",
"6" ~ "Ensino m\u00e9dio completo (antigo colegial ou 2o grau)",
"7" ~ "Educa\u00e7\u00e3o superior incompleta",
"8" ~ "Educa\u00e7\u00e3o superior completa",
"9" ~ "Ignorado",
"10" ~ "N\u00e3o se aplica",
.default = .data$CS_ESCOL_N
)
) %>%
dplyr::mutate(CS_ESCOL_N = as.factor(.data$CS_ESCOL_N))
}
# SG_UF
if ("SG_UF" %in% variables_names) {
data <- data %>%
dplyr::mutate(
SG_UF = dplyr::case_match(
.data$SG_UF,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantins",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$SG_UF
)
) %>%
dplyr::mutate(SG_UF = as.factor(.data$SG_UF))
}
# ID_PAIS
if ("ID_PAIS" %in% variables_names) {
data$ID_PAIS <- dplyr::left_join(
data,
microdatasus::paisnet,
by = c("ID_PAIS" = "ID_PAIS")
)$NM_PAIS
}
# ID_OCUPA_N
if ("ID_OCUPA_N" %in% variables_names) {
data$ID_OCUPA_N <- factor(
dplyr::left_join(
data,
microdatasus::tabCBO,
by = c("ID_OCUPA_N" = "cod")
)$nome
)
}
# FEBRE
if ("FEBRE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
FEBRE = dplyr::case_match(
.data$FEBRE,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$FEBRE
)
) %>%
dplyr::mutate(FEBRE = as.factor(.data$FEBRE))
}
# FRAQUEZA
if ("FRAQUEZA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
FRAQUEZA = dplyr::case_match(
.data$FRAQUEZA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$FRAQUEZA
)
) %>%
dplyr::mutate(FRAQUEZA = as.factor(.data$FRAQUEZA))
}
# EDEMA
if ("EDEMA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
EDEMA = dplyr::case_match(
.data$EDEMA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$EDEMA
)
) %>%
dplyr::mutate(EDEMA = as.factor(.data$EDEMA))
}
# EMAGRA
if ("EMAGRA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
EMAGRA = dplyr::case_match(
.data$EMAGRA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$EMAGRA
)
) %>%
dplyr::mutate(EMAGRA = as.factor(.data$EMAGRA))
}
# TOSSE
if ("TOSSE" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TOSSE = dplyr::case_match(
.data$TOSSE,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$TOSSE
)
) %>%
dplyr::mutate(TOSSE = as.factor(.data$TOSSE))
}
# PALIDEZ
if ("PALIDEZ" %in% variables_names) {
data <- data %>%
dplyr::mutate(
PALIDEZ = dplyr::case_match(
.data$PALIDEZ,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$PALIDEZ
)
) %>%
dplyr::mutate(PALIDEZ = as.factor(.data$PALIDEZ))
}
# BACO
if ("BACO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
BACO = dplyr::case_match(
.data$BACO,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$BACO
)
) %>%
dplyr::mutate(BACO = as.factor(.data$BACO))
}
# INFECCIOSO
if ("INFECCIOSO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
INFECCIOSO = dplyr::case_match(
.data$INFECCIOSO,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$INFECCIOSO
)
) %>%
dplyr::mutate(INFECCIOSO = as.factor(.data$INFECCIOSO))
}
# FEN_HEMORR
if ("FEN_HEMORR" %in% variables_names) {
data <- data %>%
dplyr::mutate(
FEN_HEMORR = dplyr::case_match(
.data$FEN_HEMORR,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$FEN_HEMORR
)
) %>%
dplyr::mutate(FEN_HEMORR = as.factor(.data$FEN_HEMORR))
}
# FIGADO
if ("FIGADO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
FIGADO = dplyr::case_match(
.data$FIGADO,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$FIGADO
)
) %>%
dplyr::mutate(FIGADO = as.factor(.data$FIGADO))
}
# ICTERICIA
if ("ICTERICIA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ICTERICIA = dplyr::case_match(
.data$ICTERICIA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$ICTERICIA
)
) %>%
dplyr::mutate(ICTERICIA = as.factor(.data$ICTERICIA))
}
# OUTROS
if ("OUTROS" %in% variables_names) {
data <- data %>%
dplyr::mutate(
OUTROS = dplyr::case_match(
.data$OUTROS,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$OUTROS
)
) %>%
dplyr::mutate(OUTROS = as.factor(.data$OUTROS))
}
# HIV
if ("HIV" %in% variables_names) {
data <- data %>%
dplyr::mutate(
HIV = dplyr::case_match(
.data$HIV,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$HIV
)
) %>%
dplyr::mutate(HIV = as.factor(.data$HIV))
}
# DIAG_PAR_N
if ("DIAG_PAR_N" %in% variables_names) {
data <- data %>%
dplyr::mutate(
DIAG_PAR_N = dplyr::case_match(
.data$DIAG_PAR_N,
"9" ~ NA,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\\u00e3o realizado",
.default = .data$DIAG_PAR_N
)
) %>%
dplyr::mutate(DIAG_PAR_N = as.factor(.data$DIAG_PAR_N))
}
# IFI
if ("IFI" %in% variables_names) {
data <- data %>%
dplyr::mutate(
IFI = dplyr::case_match(
.data$IFI,
"9" ~ NA,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\\u00e3o realizado",
.default = .data$IFI
)
) %>%
dplyr::mutate(IFI = as.factor(.data$IFI))
}
# OUTRO
if ("OUTRO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
OUTRO = dplyr::case_match(
.data$OUTRO,
"9" ~ NA,
"1" ~ "Positivo",
"2" ~ "Negativo",
"3" ~ "N\\u00e3o realizado",
.default = .data$OUTRO
)
) %>%
dplyr::mutate(OUTRO = as.factor(.data$OUTRO))
}
# ENTRADA
if ("ENTRADA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
ENTRADA = dplyr::case_match(
.data$ENTRADA,
"9" ~ NA,
"1" ~ "Caso novo",
"2" ~ "Recidiva",
"3" ~ "Transfer\\u00eancia",
.default = .data$ENTRADA
)
) %>%
dplyr::mutate(ENTRADA = as.factor(.data$ENTRADA))
}
# DROGA
if ("DROGA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
DROGA = dplyr::case_match(
.data$DROGA,
"9" ~ NA,
"1" ~ "Antimonial Pentavalente",
"2" ~ "Anfotericina b",
"3" ~ "Pentamidina",
"4" ~ "Anfotericina b lipossomal",
"5" ~ "Outras drogas",
.default = .data$DROGA
)
) %>%
dplyr::mutate(DROGA = as.factor(.data$DROGA))
}
# FALENCIA
if ("FALENCIA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
FALENCIA = dplyr::case_match(
.data$FALENCIA,
"9" ~ NA,
"1" ~ "Anfotericina b",
"2" ~ "Anfotericina b lipossomal",
"3" ~ "Outras drogas",
.default = .data$FALENCIA
)
) %>%
dplyr::mutate(FALENCIA = as.factor(.data$FALENCIA))
}
# CLASSI_FIN
if ("CLASSI_FIN" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CLASSI_FIN = dplyr::case_match(
.data$CLASSI_FIN,
"9" ~ NA,
"1" ~ "Confirmado",
"2" ~ "Descartado",
"8" ~ "Inconclusivo",
.default = .data$CLASSI_FIN
)
) %>%
dplyr::mutate(CLASSI_FIN = as.factor(.data$CLASSI_FIN))
}
# CRITERIO
if ("CRITERIO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
CRITERIO = dplyr::case_match(
.data$CRITERIO,
"9" ~ NA,
"1" ~ "Laboratorial",
"2" ~ "Cl\\u00ednico-epidemiol\\u00f3gico",
.default = .data$CRITERIO
)
) %>%
dplyr::mutate(CRITERIO = as.factor(.data$CRITERIO))
}
# TPAUTOCTO
if ("TPAUTOCTO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
TPAUTOCTO = dplyr::case_match(
.data$TPAUTOCTO,
"9" ~ NA,
"1" ~ "Sim",
"2" ~ "N\\u00e3o",
"3" ~ "Indeterminado",
.default = .data$TPAUTOCTO
)
) %>%
dplyr::mutate(TPAUTOCTO = as.factor(.data$TPAUTOCTO))
}
# COUFINF
if ("COUFINF" %in% variables_names) {
data <- data %>%
dplyr::mutate(
COUFINF = dplyr::case_match(
.data$COUFINF,
"0" ~ "Ignorado",
"99" ~ "Ignorado",
"11" ~ "Rond\u00f4nia",
"12" ~ "Acre",
"13" ~ "Amazonas",
"14" ~ "Roraima",
"15" ~ "Par\u00e1",
"16" ~ "Amap\u00e1",
"17" ~ "Tocantis",
"21" ~ "Maranh\u00e3o",
"22" ~ "Piau\u00ed",
"23" ~ "Cear\u00e1",
"24" ~ "Rio Grande do Norte",
"25" ~ "Para\u00edba",
"26" ~ "Pernambuco",
"27" ~ "Alagoas",
"28" ~ "Sergipe",
"29" ~ "Bahia",
"31" ~ "Minas Gerais",
"32" ~ "Esp\u00edrito Santo",
"33" ~ "Rio de Janeiro",
"35" ~ "S\u00e3o Paulo",
"41" ~ "Paran\u00e1",
"42" ~ "Santa Catarina",
"43" ~ "Rio Grande do Sul",
"50" ~ "Mato Grosso do Sul",
"51" ~ "Mato Grosso",
"52" ~ "Goi\u00e1s",
"53" ~ "Distrito Federal",
.default = .data$COUFINF
)
) %>%
dplyr::mutate(COUFINF = as.factor(.data$COUFINF))
}
# COPAISINF
if ("COPAISINF" %in% variables_names) {
data$COPAISINF <- dplyr::left_join(
data,
microdatasus::paisnet,
by = c("COPAISINF" = "COPAISINF")
)$NM_PAIS
}
# DOENCA_TRA
if ("DOENCA_TRA" %in% variables_names) {
data <- data %>%
dplyr::mutate(
DOENCA_TRA = dplyr::case_match(
.data$DOENCA_TRA,
"1" ~ "Sim",
"2" ~ "N\u00e3o",
"9" ~ NA,
.default = .data$DOENCA_TRA
)
) %>%
dplyr::mutate(DOENCA_TRA = as.factor(.data$DOENCA_TRA))
}
# EVOLUCAO
if ("EVOLUCAO" %in% variables_names) {
data <- data %>%
dplyr::mutate(
EVOLUCAO = dplyr::case_match(
.data$EVOLUCAO,
"9" ~ NA,
"1" ~ "Cura",
"2" ~ "Abandono",
"3" ~ "\\u00d3bito por LV",
"4" ~ "\\u00d3bito por outra causa",
"5" ~ "Transfer\\u00eancia",
.default = .data$EVOLUCAO
)
) %>%
dplyr::mutate(EVOLUCAO = as.factor(.data$EVOLUCAO))
}
# From data.table to tibble
data <- tibble::as_tibble(data)
# Purge levels
data <- droplevels(data)
# Unescape unicode characters
data <- suppressWarnings(tibble::as_tibble(lapply(
X = data,
FUN = stringi::stri_unescape_unicode
)))
# Return
return(data)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.