# -------------------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------------------
# [*] mlr Wrapper learners
# http://mlr-org.github.io/mlr-tutorial/release/html/wrapper/index.html
# -------------------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------------------
getPredefinedLearners = function() {
lrn.rpart = makeLearner("classif.rpart", predict.type = "prob")
lrn.gbm = makeLearner("classif.gbm", predict.type = "prob")
lrn.nb = makeLearner("classif.naiveBayes", predict.type = "prob")
# Classifiers that requires imputation
lrn.kknn = makeImputeWrapper(
learner = makeLearner("classif.kknn", predict.type = "prob"),
classes = list(numeric = imputeMedian(), factor = imputeMode()),
dummy.classes = c("numeric", "factor")
)
lrn.svm = makeImputeWrapper(
learner = makeLearner("classif.svm", predict.type = "prob"),
classes = list(numeric = imputeMedian(), factor = imputeMode()),
dummy.classes = c("numeric", "factor")
)
lrn.ranger = makeImputeWrapper(
learner = makeLearner("classif.ranger", predict.type = "prob"),
classes = list(numeric = imputeMedian(), factor = imputeMode()),
dummy.classes = c("numeric", "factor")
)
lrn.nnet = makeImputeWrapper(
learner = makeLearner("classif.nnet", predict.type = "prob"),
classes = list(numeric = imputeMedian(), factor = imputeMode()),
dummy.classes = c("numeric", "factor")
)
# All the learners remove constant and almost constant features
aux = list(lrn.nb, lrn.rpart, lrn.kknn, lrn.nnet, lrn.svm, lrn.gbm, lrn.ranger)
learners.list = lapply(aux, makeRemoveConstantFeaturesWrapper, perc = 0.01)
return(learners.list)
}
# -------------------------------------------------------------------------------------------------
# -------------------------------------------------------------------------------------------------
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.