Description Usage Arguments Examples
View source: R/validate_decomposition.R
Compare decomposed prediction to the predicted value returned from
predict.gbm. Predictions are compared up to and including every
tree in the model (i.e. comparisons are made up to and including 1st, 2nd,
..., nth trees).
1 | validate_decomposition(gbm, prediction_row, n_trees = NULL)
|
gbm |
|
prediction_row |
single row |
n_trees |
the number of trees to use in generating the prediction for
the given row. Default |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 | N <- 1000
X1 <- runif(N)
X2 <- 2*runif(N)
X3 <- ordered(sample(letters[1:4],N,replace=TRUE),levels=letters[4:1])
X4 <- factor(sample(letters[1:6],N,replace=TRUE))
X5 <- factor(sample(letters[1:3],N,replace=TRUE))
X6 <- 3*runif(N)
mu <- c(-1,0,1,2)[as.numeric(X3)]
SNR <- 10 # signal-to-noise ratio
Y <- X1**1.5 + 2 * (X2**.5) + mu
sigma <- sqrt(var(Y)/SNR)
Y <- Y + rnorm(N,0,sigma)
# introduce some missing values
X1[sample(1:N,size=500)] <- NA
X4[sample(1:N,size=300)] <- NA
data <- data.frame(Y=Y,X1=X1,X2=X2,X3=X3,X4=X4,X5=X5,X6=X6)
# fit initial model
gbm1 <- gbm(Y~X1+X2+X3+X4+X5+X6,
data=data,
var.monotone=c(0,0,0,0,0,0),
distribution="gaussian",
n.trees=1000,
shrinkage=0.05,
interaction.depth=3,
bag.fraction = 0.5,
train.fraction = 0.5)
validate_decomposition(gbm1, data[1, ])
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.