Description Usage Arguments Value See Also
The following tuners are available:
Grid search. All kinds of parameter types can be handled.
You can either use their correct param type and resolution
,
or discretize them yourself by always using makeDiscreteParam
in the par.set
passed to tuneParams
.
Random search. All kinds of parameter types can be handled.
Evolutionary method nsga2
.
Can handle numeric(vector) and integer(vector) hyperparameters, but no dependencies.
For integers the internally proposed numeric values are automatically rounded.
1 2 3 4 5 6 7 8 9 10 11 | makeTuneMultiCritControlGrid(same.resampling.instance = TRUE,
resolution = 10L, log.fun = "default", final.dw.perc = NULL,
budget = NULL)
makeTuneMultiCritControlNSGA2(same.resampling.instance = TRUE,
impute.val = NULL, log.fun = "default", final.dw.perc = NULL,
budget = NULL, ...)
makeTuneMultiCritControlRandom(same.resampling.instance = TRUE,
maxit = 100L, log.fun = "default", final.dw.perc = NULL,
budget = NULL)
|
same.resampling.instance |
[ |
resolution |
[ |
log.fun |
[ |
final.dw.perc |
[ |
budget |
[ |
impute.val |
[ |
... |
[any] |
maxit |
[ |
[TuneMultiCritControl
]. The specific subclass is one of
TuneMultiCritControlGrid
, TuneMultiCritControlRandom
,
TuneMultiCritControlNSGA2
.
Other tune_multicrit: plotTuneMultiCritResultGGVIS
,
plotTuneMultiCritResult
,
tuneParamsMultiCrit
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.