Description Usage Arguments Value See Also Examples
Complete benchmark experiment to compare different learning algorithms across one or more tasks
w.r.t. a given resampling strategy. Experiments are paired, meaning always the same
training / test sets are used for the different learners.
Furthermore, you can of course pass “enhanced” learners via wrappers, e.g., a
learner can be automatically tuned using makeTuneWrapper
.
1 2 |
learners |
[(list of) |
tasks |
[(list of) |
resamplings |
[(list of) |
measures |
[(list of) |
keep.pred |
[ |
models |
[ |
show.info |
[ |
[BenchmarkResult
].
Other benchmark: BenchmarkResult
,
batchmark
,
convertBMRToRankMatrix
,
friedmanPostHocTestBMR
,
friedmanTestBMR
,
generateCritDifferencesData
,
getBMRAggrPerformances
,
getBMRFeatSelResults
,
getBMRFilteredFeatures
,
getBMRLearnerIds
,
getBMRLearnerShortNames
,
getBMRLearners
,
getBMRMeasureIds
,
getBMRMeasures
, getBMRModels
,
getBMRPerformances
,
getBMRPredictions
,
getBMRTaskDescs
,
getBMRTaskIds
,
getBMRTuneResults
,
plotBMRBoxplots
,
plotBMRRanksAsBarChart
,
plotBMRSummary
,
plotCritDifferences
,
reduceBatchmarkResults
1 2 3 4 5 6 7 8 9 10 11 12 | lrns = list(makeLearner("classif.lda"), makeLearner("classif.rpart"))
tasks = list(iris.task, sonar.task)
rdesc = makeResampleDesc("CV", iters = 2L)
meas = list(acc, ber)
bmr = benchmark(lrns, tasks, rdesc, measures = meas)
rmat = convertBMRToRankMatrix(bmr)
print(rmat)
plotBMRSummary(bmr)
plotBMRBoxplots(bmr, ber, style = "violin")
plotBMRRanksAsBarChart(bmr, pos = "stack")
friedmanTestBMR(bmr)
friedmanPostHocTestBMR(bmr, p.value = 0.05)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.