Description Usage Arguments Value See Also Examples
Predict the target variable of new data using a fitted model.
What is stored exactly in the [Prediction
] object depends
on the predict.type
setting of the Learner
.
If predict.type
was set to “prob” probability thresholding
can be done calling the setThreshold
function on the
prediction object.
The row names of the input task
or newdata
are preserved in the output.
1 2 |
object |
[ |
task |
[ |
newdata |
[ |
subset |
[ |
... |
[any] |
[Prediction
].
Other predict: asROCRPrediction
,
getPredictionProbabilities
,
getPredictionResponse
,
getPredictionTaskDesc
,
plotViperCharts
,
setPredictThreshold
,
setPredictType
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # train and predict
train.set = seq(1, 150, 2)
test.set = seq(2, 150, 2)
model = train("classif.lda", iris.task, subset = train.set)
p = predict(model, newdata = iris, subset = test.set)
print(p)
predict(model, task = iris.task, subset = test.set)
# predict now probabiliies instead of class labels
lrn = makeLearner("classif.lda", predict.type = "prob")
model = train(lrn, iris.task, subset = train.set)
p = predict(model, task = iris.task, subset = test.set)
print(p)
getPredictionProbabilities(p)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.