TTCross | R Documentation |
TTCross incrementaly decomposes the input tensor by skeleton decomposition algorithm. The algorithm only select the row/column indices and any large temporal matrix are genrated in the process. Therefore, this method is suitable for the sparse tensor.
TTCross(A, Ranks=NULL, thr=1E-10, num.iter=30)
A |
The input sparse tensor. |
Ranks |
TT-ranks to specify the lower dimensions. |
thr |
The threshold to determine the convergence (Default: 1E-10). |
num.iter |
The number of iteration (Default: 30). |
G : Core tensors
Koki Tsuyuzaki
I. V. Oseledets, et. al., (2010). TT-cross approximation for multidimensional arrays. Linear Algebra and its Applications
library("rTensor") library("tensorr") # Sparse Tensor data X1 <- array(rnorm(3*5*7*9*11), c(3,5,7,9,11)) dimnames(X1) <- list( I=paste0("i", 1:3), J=paste0("j", 1:5), K=paste0("k", 1:7), L=paste0("l", 1:9), M=paste0("m", 1:11) ) X1 <- as.tensor(X1) X2 <- as_sptensor(dtensor(X1@data)) dimnames(X2) <- dimnames(X1@data) # TT-ranks Ranks <- c(p=2, q=4, r=6, s=8) # TT-Cross out.TTCross <- TTCross(X2, Ranks, num.iter=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.