TTWOPT | R Documentation |
TTWOPT incrementaly decomposes the input tensor by gradient desecent. The tensor with missing entries is also specified with weight tensor W.
TTWOPT(X, Ranks, W=NULL, eta=1E-7, thr=1E-10, num.iter=100)
X |
The input tensor. |
Ranks |
TT-ranks to specify the lower dimensions. |
W |
The weight tensor to specify the missing entries (0: missing, 1: existing). The size must be same as that of X. |
eta |
The learning rate parameter of the gradient descent algorithm (Default : 1E-10). |
thr |
The threshold to determine the convergence (Default: 1E-10). |
num.iter |
The number of iteration (Default: 30). |
G : Core tensors RelChange : The relative change of the error f : The values of the object function RecError : The reconstruction error between data tensor and reconstructed tensor from C, U, and R
Koki Tsuyuzaki
Yuan, Longhao, et. al., (2017). Completion of high order tensor data with missing entries via tensor-train decomposition. International Conference on Neural Information Processing
library("rTensor") # Tensor data X1 <- array(rnorm(3*5*7*9*11), c(3,5,7,9,11)) dimnames(X1) <- list( I=paste0("i", 1:3), J=paste0("j", 1:5), K=paste0("k", 1:7), L=paste0("l", 1:9), M=paste0("m", 1:11) ) X1 <- as.tensor(X1) # TT-ranks Ranks <- c(p=2, q=4, r=6, s=8) # TTWOPT out.TTWOPT <- TTWOPT(X1, Ranks, eta=1E-7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.