skeleton.decomp | R Documentation |
skeleton.decomp decomposes the input sparse matrix (n*m) and return the three matrices C (n*r), U (r*r), and R (r*m). Only sparse matrix defined by the Matrix package is acceptable as the input.
skeleton.decomp(A, r, thr=1E-10, num.iter=30)
A |
The input sparse matrix. |
r |
Rank parameter to specify the lower dimension (r <= min(A)). |
thr |
The threshold to determine the convergence (Default: 1E-10). |
num.iter |
The number of iteration (Default: 30). |
C : A[I, :] U : inverse(A[I, J]) R : A[:, J] rowidx :The indices of rows colidx : The indices of columns RecError : The reconstruction error between data matrix and reconstructed matrix from C, U, and R RelChange : The relative change of the error
Koki Tsuyuzaki
I. V. Oseledets, et. al., (2010). TT-cross approximation for multidimensional arrays. Linear Algebra and its Applications
maxvol
library("Matrix") # Matrix data X3 <- matrix(runif(10*20), nrow=10) X3 <- as(X3, "sparseMatrix") # Skeleton Decomposition out.SKD <- skeleton.decomp(X3, r=3, num.iter=2, thr=1E-5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.