#' Suitable for t-test:
#'
#' The function "blindDataTtest_MaskGroups" masks the label names for the
#' independent variables. This blinding works also if there are more than 2
#' groups, but the function will throw a message that there are more than 2
#' groups. For example, the variable "expert" has two factor labels: "low/high".
#' After blinding, this becomes "Condition 1/Condition 2"
#' @param df_original # original dataframe
#' @param y # name of dependent variable
#' @param predictor # name of predictor, for example: "expert"
#' @param update_labels # if TRUE update labels to BLIND_[abbrevation]_[name]
#' @keywords mask groups, ttest
#' @importFrom dplyr mutate_if select
blindDataTtest_MaskGroups <- function(df_original,
y,
predictor,
update_labels = TRUE){
# Step 1: Select only the grouping variables
df_predictor <- as.data.frame(df_original[,predictor])
# Step 2: If grouping variable is not set as factor, convert into factors
df_predictor <- mutate_if(df_predictor, is.character, as.factor)
# Step 3: (helper) Function that can mask factor labels
maskLabels <- function(factor_variable){
# a) Extract number of labels and
n_labels <- length(levels(factor_variable))
# throw a message if there are more than 2 groups
if(n_labels>2){
print("The predictor variable has more than 2 groups; t-test requires
2 groups")}
# b) Assign a new condition + n[i] at random (so it's not alphabetical)
# For example, a 2 factor "low/high" becomes "Condition 1/Condition 2"
levels(factor_variable) <- paste("Condition",
sample(1:n_labels, replace = F))
# c) Return randomized levels of factor variable
return(factor_variable)
}
# Step 4: Replace labels of all variables in df_predictor
for(i in 1:ncol(df_predictor)){
df_predictor[,i] <- maskLabels(df_predictor[,i])
}
# Step 5: Rename the predictor if update_labels = TRUE
if(update_labels){
names(df_predictor) <-
paste0("BLIND_MG_", names(df_predictor))
}
# Step 5: Create blinded df of the masked labels of predictor and Y
# Conscious decision not to include variables that aren't blinded
# (so only output a dataset with blinded variables),
df_blindMaskGroups <- data.frame(df_original[,y],
df_predictor)
# Return
return(df_blindMaskGroups)
} # End blindDataTtest_MaskGroups
# blindDataTtest_MaskGroups(df_original = df_sim_ttest,
# y = "score",
# predictor = "expert")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.